Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Pilot design of a rule-based system and an artificial neural network to risk evaluation of atherosclerotic plaques in long-range clinical research

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F18%3AA0000220" target="_blank" >RIV/47813059:19240/18:A0000220 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-01421-6_9" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-01421-6_9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-01421-6_9" target="_blank" >10.1007/978-3-030-01421-6_9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Pilot design of a rule-based system and an artificial neural network to risk evaluation of atherosclerotic plaques in long-range clinical research

  • Popis výsledku v původním jazyce

    Early diagnostics and knowledge of the progress of atherosclerotic plaques are key parameters which can help start the most efficient treatment. Reliable prediction of growing of atherosclerotic plaques could be very important part of early diagnostics to judge potential impact of the plaque and to decide necessity of immediate artery recanalization. For this pilot study we have a large set of measured data from total of 482 patients. For each patient the width of the plaque from left and right side during at least 5 years at regular intervals for 6 months was measured Patients were examined each 6 months and width of the plaque was measured using ultrasound B-image and the data were stored into a database. The first part is focused on rule-based expert system designed for evaluation of suggestion to immediate recanalization according to progress of the plaque. These results will be verified by an experienced sonographer. This system could be a starting point to design an artificial neural network with adaptive learning based on image processing of ultrasound B-images for classification of the plaques using feature analysis. The principle of the network is based on edge detection analysis of the plaques using feed-forwarded network with Error Back-Propagation algorithm. Training and learning of the ANN will be time-consuming processes for a long-term research. The goal is to create ANN which can recognize the border of the plaques and to measure of the width. The expert system and ANN are two different approaches, however, both of them can cooperate.

  • Název v anglickém jazyce

    Pilot design of a rule-based system and an artificial neural network to risk evaluation of atherosclerotic plaques in long-range clinical research

  • Popis výsledku anglicky

    Early diagnostics and knowledge of the progress of atherosclerotic plaques are key parameters which can help start the most efficient treatment. Reliable prediction of growing of atherosclerotic plaques could be very important part of early diagnostics to judge potential impact of the plaque and to decide necessity of immediate artery recanalization. For this pilot study we have a large set of measured data from total of 482 patients. For each patient the width of the plaque from left and right side during at least 5 years at regular intervals for 6 months was measured Patients were examined each 6 months and width of the plaque was measured using ultrasound B-image and the data were stored into a database. The first part is focused on rule-based expert system designed for evaluation of suggestion to immediate recanalization according to progress of the plaque. These results will be verified by an experienced sonographer. This system could be a starting point to design an artificial neural network with adaptive learning based on image processing of ultrasound B-images for classification of the plaques using feature analysis. The principle of the network is based on edge detection analysis of the plaques using feed-forwarded network with Error Back-Propagation algorithm. Training and learning of the ANN will be time-consuming processes for a long-term research. The goal is to create ANN which can recognize the border of the plaques and to measure of the width. The expert system and ANN are two different approaches, however, both of them can cooperate.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science

  • ISBN

    9783030014216

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    90-100

  • Název nakladatele

    Springer Verlag

  • Místo vydání

    Cham

  • Místo konání akce

    Rhodes; Greece

  • Datum konání akce

    4. 10. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku