An expert system based on using artificial neural network and region-based image processing to recognition substantia nigra and atherosclerotic plaques in b-images: A prospective study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F17%3AA0000123" target="_blank" >RIV/47813059:19240/17:A0000123 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-59153-7_21" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-59153-7_21</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-59153-7_21" target="_blank" >10.1007/978-3-319-59153-7_21</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An expert system based on using artificial neural network and region-based image processing to recognition substantia nigra and atherosclerotic plaques in b-images: A prospective study
Popis výsledku v původním jazyce
The presented paper is focused on ways of digital image analysis of ultrasound B-images based on echogenicity investigation in determined Region of Interest (ROI). An expert system has been developed in the course of the research. The goal of the paper is to demonstrate how to interconnect automatic finding of the position of the substantia nigra using Artificial Neural Network (ANN) with supervised learning and ROI-based image analysis. For substantia nigra is able to detect the position using ANN from B-image in transverse thalamic plane. From this is computed echogenicity index grade inside the ROI as parkinsonism feature. The methodology is well applicable for a set of images with the same resolution. The results have shown practical application of ANN learning in this case. The second part of the paper is focused on detection of atherosclerotic plaques. An experimental prospective study shown the using ANN can be highly time-consuming problem due to complexity of B-images. The plaques have no standardized shape and size in comparison with SN. To objective appraisal of using ANN to automatic finding atherosclerotic plaque in B-image we need a large set of images of normal and pathological state. Although it is very important using ANN, automatic detection in highly time-consuming problem for ANN training.
Název v anglickém jazyce
An expert system based on using artificial neural network and region-based image processing to recognition substantia nigra and atherosclerotic plaques in b-images: A prospective study
Popis výsledku anglicky
The presented paper is focused on ways of digital image analysis of ultrasound B-images based on echogenicity investigation in determined Region of Interest (ROI). An expert system has been developed in the course of the research. The goal of the paper is to demonstrate how to interconnect automatic finding of the position of the substantia nigra using Artificial Neural Network (ANN) with supervised learning and ROI-based image analysis. For substantia nigra is able to detect the position using ANN from B-image in transverse thalamic plane. From this is computed echogenicity index grade inside the ROI as parkinsonism feature. The methodology is well applicable for a set of images with the same resolution. The results have shown practical application of ANN learning in this case. The second part of the paper is focused on detection of atherosclerotic plaques. An experimental prospective study shown the using ANN can be highly time-consuming problem due to complexity of B-images. The plaques have no standardized shape and size in comparison with SN. To objective appraisal of using ANN to automatic finding atherosclerotic plaque in B-image we need a large set of images of normal and pathological state. Although it is very important using ANN, automatic detection in highly time-consuming problem for ANN training.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science
ISBN
9783319591520
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
236-245
Název nakladatele
Springer Verlag
Místo vydání
Cham
Místo konání akce
Cadiz; Spain
Datum konání akce
1. 1. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—