Computational Universality and Efficiency in Morphogenetic Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F22%3AA0000999" target="_blank" >RIV/47813059:19240/22:A0000999 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-13502-6_11" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-13502-6_11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-13502-6_11" target="_blank" >10.1007/978-3-031-13502-6_11</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational Universality and Efficiency in Morphogenetic Systems
Popis výsledku v původním jazyce
The topic of computational universality and efficiency of various types of abstract machines is still subject of intensive research. Besides many crucial open theoretical problems, there are also numerous potential applications, e.g., in construction of small physical computing machines (nano-automata), harnessing algorithmic processes in biology or biochemistry, efficient solving of computationally hard problems and many more. The study of computability and complexity of new abstract models can help to understand the borderline between non-universality and universality, or between tractable and intractable problems. Here we study computational universality (in Turing sense) and computational complexity in the framework of morphogenetic (M) systems—computational models combining properties of membrane systems and algorithmic self-assembly of pre-defined atomic polytopes. Even very simple morphogenetic systems can exhibit complex self-organizing behaviour and phenomena such as controlled growth, self-reproduction, homeostasis and self-healing. We present two small universal M systems, one of which is additionally self-healing. Then we show how the borderline P versus NP can be characterized by some properties of morphogenetic systems.
Název v anglickém jazyce
Computational Universality and Efficiency in Morphogenetic Systems
Popis výsledku anglicky
The topic of computational universality and efficiency of various types of abstract machines is still subject of intensive research. Besides many crucial open theoretical problems, there are also numerous potential applications, e.g., in construction of small physical computing machines (nano-automata), harnessing algorithmic processes in biology or biochemistry, efficient solving of computationally hard problems and many more. The study of computability and complexity of new abstract models can help to understand the borderline between non-universality and universality, or between tractable and intractable problems. Here we study computational universality (in Turing sense) and computational complexity in the framework of morphogenetic (M) systems—computational models combining properties of membrane systems and algorithmic self-assembly of pre-defined atomic polytopes. Even very simple morphogenetic systems can exhibit complex self-organizing behaviour and phenomena such as controlled growth, self-reproduction, homeostasis and self-healing. We present two small universal M systems, one of which is additionally self-healing. Then we show how the borderline P versus NP can be characterized by some properties of morphogenetic systems.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Machines, Computations, and Universality
ISBN
9783031135019
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
14
Strana od-do
158-171
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Cham
Místo konání akce
Debrecen
Datum konání akce
31. 8. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000870314700011