Morphogenetic computing: computability and complexity results
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F22%3AA0001000" target="_blank" >RIV/47813059:19240/22:A0001000 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11047-022-09899-x" target="_blank" >https://link.springer.com/article/10.1007/s11047-022-09899-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11047-022-09899-x" target="_blank" >10.1007/s11047-022-09899-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Morphogenetic computing: computability and complexity results
Popis výsledku v původním jazyce
A morphogenetic (M) system is an abstract computational model combining properties of membrane (P) systems, such as computing via abstract particles in separate compartments regulating their workflow, with algorithmic self-assembly generalizing original Wang tiles to arbitrary polytopes forming complex shapes in 2D/3D (or generally, dD) space. Even very simple morphogenetic systems can exhibit complex self-organizing behaviour and, at the abstract level, one can observe characteristic properties of morphogenetic phenomena such as controlled growth, self-reproduction, homeostasis and self-healing. Here we focus on computational aspects of the morphogenetic systems. After summarizing a series of results related to their computational universality (in the Turing sense) and computational complexity, we present two small universal M systems (one of them self-healing) and we also demonstrate how morphogenetic systems relate to the classes P and NP.
Název v anglickém jazyce
Morphogenetic computing: computability and complexity results
Popis výsledku anglicky
A morphogenetic (M) system is an abstract computational model combining properties of membrane (P) systems, such as computing via abstract particles in separate compartments regulating their workflow, with algorithmic self-assembly generalizing original Wang tiles to arbitrary polytopes forming complex shapes in 2D/3D (or generally, dD) space. Even very simple morphogenetic systems can exhibit complex self-organizing behaviour and, at the abstract level, one can observe characteristic properties of morphogenetic phenomena such as controlled growth, self-reproduction, homeostasis and self-healing. Here we focus on computational aspects of the morphogenetic systems. After summarizing a series of results related to their computational universality (in the Turing sense) and computational complexity, we present two small universal M systems (one of them self-healing) and we also demonstrate how morphogenetic systems relate to the classes P and NP.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Natural Computing
ISSN
1567-7818
e-ISSN
1572-9796
Svazek periodika
2022
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
000826835000001
EID výsledku v databázi Scopus
2-s2.0-85134545344