Analysis of Social Networks Extracted from Log Files
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F10%3A%230000463" target="_blank" >RIV/47813059:19520/10:#0000463 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of Social Networks Extracted from Log Files
Popis výsledku v původním jazyce
Modern applications generate huge amounts of data collections, often stored in log files. A log file is a simple text file, consisted on messages represented by the records of the activities provided. Whether the log record includes the information of the originator (a person, who performed the action), we can derive social networks on the basis of similar attributes of the persons and, in consequence, we can construct models that explain some aspects of persons' behavior. The chapter is oriented to significant data mining methods, used in recent research, with relation to social network analysis and with application to gathering information from the log files. Selected data mining methods are presented in the case study, where the development and visualization of synthetic social network based on the relationship between the students with similar study behavior in the elearning management system Moodle is described.
Název v anglickém jazyce
Analysis of Social Networks Extracted from Log Files
Popis výsledku anglicky
Modern applications generate huge amounts of data collections, often stored in log files. A log file is a simple text file, consisted on messages represented by the records of the activities provided. Whether the log record includes the information of the originator (a person, who performed the action), we can derive social networks on the basis of similar attributes of the persons and, in consequence, we can construct models that explain some aspects of persons' behavior. The chapter is oriented to significant data mining methods, used in recent research, with relation to social network analysis and with application to gathering information from the log files. Selected data mining methods are presented in the case study, where the development and visualization of synthetic social network based on the relationship between the students with similar study behavior in the elearning management system Moodle is described.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Handbook of Social Network Technologies and Applications
ISBN
978-1-4419-7142-5
Počet stran výsledku
32
Strana od-do
—
Počet stran knihy
716
Název nakladatele
Springer Verlag
Místo vydání
New York
Kód UT WoS kapitoly
—