Analysis of SAP Log Data Based on Network Community Decomposition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10244304" target="_blank" >RIV/61989100:27240/19:10244304 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2078-2489/10/3/92/htm" target="_blank" >https://www.mdpi.com/2078-2489/10/3/92/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/info10030092" target="_blank" >10.3390/info10030092</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of SAP Log Data Based on Network Community Decomposition
Popis výsledku v původním jazyce
Information systems support and ensure the practical running of the most critical business processes. There exists (or can be reconstructed) a record (log) of the process running in the information system. Computer methods of data mining can be used for analysis of process data utilizing support techniques of machine learning and a complex network analysis. The analysis is usually provided based on quantitative parameters of the running process of the information system. It is not so usual to analyze behavior of the participants of the running process from the process log. Here, we show how data and process mining methods can be used for analyzing the running process and how participants behavior can be analyzed from the process log using network (community or cluster) analyses in the constructed complex network from the SAP business process log. This approach constructs a complex network from the process log in a given context and then finds communities or patterns in this network. Found communities or patterns are analyzed using knowledge of the business process and the environment in which the process operates. The results demonstrate the possibility to cover up not only the quantitative but also the qualitative relations (e.g., hidden behavior of participants) using the process log and specific knowledge of the business case.
Název v anglickém jazyce
Analysis of SAP Log Data Based on Network Community Decomposition
Popis výsledku anglicky
Information systems support and ensure the practical running of the most critical business processes. There exists (or can be reconstructed) a record (log) of the process running in the information system. Computer methods of data mining can be used for analysis of process data utilizing support techniques of machine learning and a complex network analysis. The analysis is usually provided based on quantitative parameters of the running process of the information system. It is not so usual to analyze behavior of the participants of the running process from the process log. Here, we show how data and process mining methods can be used for analyzing the running process and how participants behavior can be analyzed from the process log using network (community or cluster) analyses in the constructed complex network from the SAP business process log. This approach constructs a complex network from the process log in a given context and then finds communities or patterns in this network. Found communities or patterns are analyzed using knowledge of the business process and the environment in which the process operates. The results demonstrate the possibility to cover up not only the quantitative but also the qualitative relations (e.g., hidden behavior of participants) using the process log and specific knowledge of the business case.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information
ISSN
2078-2489
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
25
Strana od-do
—
Kód UT WoS článku
000464294500001
EID výsledku v databázi Scopus
2-s2.0-85063871014