An approach to structure determination and estimation of hierarchical Archimedean Copulas and its application to Bayesian classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F15%3A%230003540" target="_blank" >RIV/47813059:19520/15:#0003540 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/16:00442862
Výsledek na webu
<a href="http://link.springer.com/article/10.1007/s10844-014-0350-3" target="_blank" >http://link.springer.com/article/10.1007/s10844-014-0350-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10844-014-0350-3" target="_blank" >10.1007/s10844-014-0350-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An approach to structure determination and estimation of hierarchical Archimedean Copulas and its application to Bayesian classification
Popis výsledku v původním jazyce
Copulas are distribution functions with standard uniform univariate marginals. Copulas are widely used for studying dependence among continuously distributed random variables, with applications in finance and quantitative risk management; see, e.g., thepricing of collateralized debt obligations. The ability to model complex dependence structures among variables has recently become increasingly popular in the realm of statistics, one example being data mining (e.g., cluster analysis, evolutionary algorithms or classification). The present work considers an estimator for both the structure and the parameters of hierarchical Archimedean copulas. Such copulas have recently become popular alternatives to the widely used Gaussian copulas. The proposed estimator is based on a pairwise inversion of Kendall's tau estimator recently considered in the literature but can be based on other estimators as well, such as likelihood-based. A simple algorithm implementing the proposed estimator is provi
Název v anglickém jazyce
An approach to structure determination and estimation of hierarchical Archimedean Copulas and its application to Bayesian classification
Popis výsledku anglicky
Copulas are distribution functions with standard uniform univariate marginals. Copulas are widely used for studying dependence among continuously distributed random variables, with applications in finance and quantitative risk management; see, e.g., thepricing of collateralized debt obligations. The ability to model complex dependence structures among variables has recently become increasingly popular in the realm of statistics, one example being data mining (e.g., cluster analysis, evolutionary algorithms or classification). The present work considers an estimator for both the structure and the parameters of hierarchical Archimedean copulas. Such copulas have recently become popular alternatives to the widely used Gaussian copulas. The proposed estimator is based on a pairwise inversion of Kendall's tau estimator recently considered in the literature but can be based on other estimators as well, such as likelihood-based. A simple algorithm implementing the proposed estimator is provi
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-17187S" target="_blank" >GA13-17187S: Konstrukce pokročilých srozumitelných klasifikátorů</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Intelligent Information Systems
ISSN
0925-9902
e-ISSN
—
Svazek periodika
46
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
39
Strana od-do
21-59
Kód UT WoS článku
000372261600002
EID výsledku v databázi Scopus
—