Conversion of Real Data from Production Process of Automotive Company for Process Mining Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F17%3A00010804" target="_blank" >RIV/47813059:19520/17:00010804 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-59394-4_22" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-59394-4_22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-59394-4_22" target="_blank" >10.1007/978-3-319-59394-4_22</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Conversion of Real Data from Production Process of Automotive Company for Process Mining Analysis
Popis výsledku v původním jazyce
The aim of this paper is to convert the real data from the raw format from different information systems (log files) to the format, which is suitable for process mining analysis of a production process in a large automotive company. The conversion process will start with the import from several relational databases. The motivation is to use the DISCO tool for importing real pre-processed data and to conduct process mining analysis of a production process. DISCO generates process models from imported data in a comprehensive graphical form and provides different statistical features to analyse the process. This makes it possible to examine the production process in detail, identify bottlenecks, and streamline the process. The paper firstly presents a brief introduction of a manufacturing process in a company. Secondly, it provides a description of a conversion and pre-processing of chosen real data structures for the DISCO import. Then, it briefly describes the DISCO tool and proper form at of pre-processed log file, which serves as desired input data. This data will be the main source for all consecutive operations in generated process map. Finally, it provides a sample analysis description with emphasis on one production process (process map and few statistics). To conclude, the results obtained show high demands on pre-processing of real data for suitable import format into DISCO tool and vital possibilities of process mining methods to optimize a production process in an automotive company.
Název v anglickém jazyce
Conversion of Real Data from Production Process of Automotive Company for Process Mining Analysis
Popis výsledku anglicky
The aim of this paper is to convert the real data from the raw format from different information systems (log files) to the format, which is suitable for process mining analysis of a production process in a large automotive company. The conversion process will start with the import from several relational databases. The motivation is to use the DISCO tool for importing real pre-processed data and to conduct process mining analysis of a production process. DISCO generates process models from imported data in a comprehensive graphical form and provides different statistical features to analyse the process. This makes it possible to examine the production process in detail, identify bottlenecks, and streamline the process. The paper firstly presents a brief introduction of a manufacturing process in a company. Secondly, it provides a description of a conversion and pre-processing of chosen real data structures for the DISCO import. Then, it briefly describes the DISCO tool and proper form at of pre-processed log file, which serves as desired input data. This data will be the main source for all consecutive operations in generated process map. Finally, it provides a sample analysis description with emphasis on one production process (process map and few statistics). To conclude, the results obtained show high demands on pre-processing of real data for suitable import format into DISCO tool and vital possibilities of process mining methods to optimize a production process in an automotive company.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Smart Innovation, Systems and Technologies. Agent and Multi-Agent Systems: Technologies and Applications.
ISBN
978-3-319-59393-7
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
223-233
Název nakladatele
Springer International Publishing AG
Místo vydání
Switzerland
Místo konání akce
Vilamoura
Datum konání akce
21. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—