Strict Consistency in Pairwise Comparisons Matrix With Fuzzy Elements
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F17%3A00010971" target="_blank" >RIV/47813059:19520/17:00010971 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-59421-7" target="_blank" >http://dx.doi.org/10.1007/978-3-319-59421-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-59421-7" target="_blank" >10.1007/978-3-319-59421-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Strict Consistency in Pairwise Comparisons Matrix With Fuzzy Elements
Popis výsledku v původním jazyce
This paper forms both theoretical and practical innovation basis for decision making process in micro and macro economics. The decision making problem considered here is to rank n alternatives from the best to the worst, using the information given by the decision maker-s in the form of an n n pairwise comparisons matrix. Here, we deal with pairwise comparisons matrices with fuzzy elements. Fuzzy elements of the pairwise comparisons matrix are applied whenever the decision maker is uncertain about the value of his/her evaluation of the relative importance of elements in question. We investigate pairwise comparisons matrices with elements from abelian linearly ordered group /alo-group/ over a real interval which is a generalization of traditional multiplicative or additive approaches. The concept of reciprocity and consistency of pairwise comparisons matrices with fuzzy elements is well known. Here, we extend these concepts, namely to the strict as well as strong consistency of pairwise comparisons matrices with fuzzy elements /PCF matrices/. We derive the necessary and sucient conditions for strict/strong consistency and investigate their properties as well as some consequences to the problem of ranking the alternatives. Illustrating examples are presented and discussed.
Název v anglickém jazyce
Strict Consistency in Pairwise Comparisons Matrix With Fuzzy Elements
Popis výsledku anglicky
This paper forms both theoretical and practical innovation basis for decision making process in micro and macro economics. The decision making problem considered here is to rank n alternatives from the best to the worst, using the information given by the decision maker-s in the form of an n n pairwise comparisons matrix. Here, we deal with pairwise comparisons matrices with fuzzy elements. Fuzzy elements of the pairwise comparisons matrix are applied whenever the decision maker is uncertain about the value of his/her evaluation of the relative importance of elements in question. We investigate pairwise comparisons matrices with elements from abelian linearly ordered group /alo-group/ over a real interval which is a generalization of traditional multiplicative or additive approaches. The concept of reciprocity and consistency of pairwise comparisons matrices with fuzzy elements is well known. Here, we extend these concepts, namely to the strict as well as strong consistency of pairwise comparisons matrices with fuzzy elements /PCF matrices/. We derive the necessary and sucient conditions for strict/strong consistency and investigate their properties as well as some consequences to the problem of ranking the alternatives. Illustrating examples are presented and discussed.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Intelligent Decision Technologies 2017 - Smart Innovation, Systems and Technologies
ISBN
978-3-319-59420-0
Počet stran výsledku
10
Strana od-do
1-10
Počet stran knihy
700
Název nakladatele
Springer International AG
Místo vydání
Cham, Switzerland
Kód UT WoS kapitoly
—