Condition of Order Preservation in Pairwise Comparisons Matrix
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F18%3A00011195" target="_blank" >RIV/47813059:19520/18:00011195 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Condition of Order Preservation in Pairwise Comparisons Matrix
Popis výsledku v původním jazyce
This paper forms both theoretical and practical innovation basis for decision making process in micro and macro economics. The decision making problem considered here is to rank n alternatives from the best to the worst, using the information given by the decision maker(s) in the form of an n×n pairwise comparisons matrix. Here, we deal with pairwise comparisons matrices with fuzzy elements. Fuzzy elements of the pairwise comparisons matrix are applied whenever the decision maker is uncertain about the value of his/her evaluation of the relative importance of elements in question. We investigate pairwise comparisons matrices with elements from abelian linearly ordered group (alo-group) over a real interval which is a generalization of traditional multiplicative or additive approaches. The concept of reciprocity and consistency of pairwise comparisons matrices with fuzzy elements is well known. Here, we extend these concepts, namely to the strict as well as strong consistency of pairwis e comparisons matrices with fuzzy elements (PCF matrices). We derive the necessary and sufficient conditions for strict/strong consistency and investigate their properties as well as some consequences to the problem of ranking the alternatives. Illustrating examples are presented and discussed.
Název v anglickém jazyce
Condition of Order Preservation in Pairwise Comparisons Matrix
Popis výsledku anglicky
This paper forms both theoretical and practical innovation basis for decision making process in micro and macro economics. The decision making problem considered here is to rank n alternatives from the best to the worst, using the information given by the decision maker(s) in the form of an n×n pairwise comparisons matrix. Here, we deal with pairwise comparisons matrices with fuzzy elements. Fuzzy elements of the pairwise comparisons matrix are applied whenever the decision maker is uncertain about the value of his/her evaluation of the relative importance of elements in question. We investigate pairwise comparisons matrices with elements from abelian linearly ordered group (alo-group) over a real interval which is a generalization of traditional multiplicative or additive approaches. The concept of reciprocity and consistency of pairwise comparisons matrices with fuzzy elements is well known. Here, we extend these concepts, namely to the strict as well as strong consistency of pairwis e comparisons matrices with fuzzy elements (PCF matrices). We derive the necessary and sufficient conditions for strict/strong consistency and investigate their properties as well as some consequences to the problem of ranking the alternatives. Illustrating examples are presented and discussed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Intelligent Decision Technologies
ISBN
978-3-319-59420-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
283-292
Název nakladatele
Springer
Místo vydání
Cham, Switzerland
Místo konání akce
Vilamoura, Portugal
Datum konání akce
12. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—