Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the Monte Carlo weights in multiple criteria decision analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F22%3AA0000290" target="_blank" >RIV/47813059:19520/22:A0000290 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268950" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268950</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the Monte Carlo weights in multiple criteria decision analysis

  • Popis výsledku v původním jazyce

    In multiple-criteria decision making/aiding/analysis (MCDM/MCDA) weights of criteria constitute a crucial input for finding an optimal solution (alternative). A large number of methods were proposed for criteria weights derivation including direct ranking, point allocation, pairwise comparisons, entropy method, standard deviation method, and so on. However, the problem of correct criteria weights setting persists, especially when the number of criteria is relatively high. The aim of this paper is to approach the problem of determining criteria weights from a different perspective: we examine what weights’ values have to be for a given alternative to be ranked the best. We consider a space of all feasible weights from which a large number of weights in the form of n−tuples is drawn randomly via Monte Carlo method. Then, we use predefined dominance relations for comparison and ranking of alternatives, which are based on the set of generated cases. Further on, we provide the estimates for a sample size so the results could be considered robust enough. At last, but not least, we introduce the concept of central weights and the measure of its robustness (stability) as well as the concept of alternatives’ multi-dominance, and show their application to a real-world problem of the selection of the best wind turbine.

  • Název v anglickém jazyce

    On the Monte Carlo weights in multiple criteria decision analysis

  • Popis výsledku anglicky

    In multiple-criteria decision making/aiding/analysis (MCDM/MCDA) weights of criteria constitute a crucial input for finding an optimal solution (alternative). A large number of methods were proposed for criteria weights derivation including direct ranking, point allocation, pairwise comparisons, entropy method, standard deviation method, and so on. However, the problem of correct criteria weights setting persists, especially when the number of criteria is relatively high. The aim of this paper is to approach the problem of determining criteria weights from a different perspective: we examine what weights’ values have to be for a given alternative to be ranked the best. We consider a space of all feasible weights from which a large number of weights in the form of n−tuples is drawn randomly via Monte Carlo method. Then, we use predefined dominance relations for comparison and ranking of alternatives, which are based on the set of generated cases. Further on, we provide the estimates for a sample size so the results could be considered robust enough. At last, but not least, we introduce the concept of central weights and the measure of its robustness (stability) as well as the concept of alternatives’ multi-dominance, and show their application to a real-world problem of the selection of the best wind turbine.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-03085S" target="_blank" >GA21-03085S: Párové porovnání a data mining při podpoře rozhodovacích procesů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PLOS ONE

  • ISSN

    1932-6203

  • e-ISSN

  • Svazek periodika

    17

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    18

  • Strana od-do

    1-18

  • Kód UT WoS článku

    000911414400001

  • EID výsledku v databázi Scopus