Why We Need Desirable Properties in Pairwise Comparison Methods?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F24%3AA0000446" target="_blank" >RIV/47813059:19520/24:A0000446 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/mcda.70002" target="_blank" >http://dx.doi.org/10.1002/mcda.70002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mcda.70002" target="_blank" >10.1002/mcda.70002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Why We Need Desirable Properties in Pairwise Comparison Methods?
Popis výsledku v původním jazyce
Pairwise comparison matrices (PCMs) are inevitable tools in some important multiple-criteria decision-making methods, for example AHP/ANP, TOPSIS, PROMETHEE and others. In this paper, we investigate some important properties of PCMs which influence the generated priority vectors for the final ranking of the given alternatives. The main subproblem of the Analytic Hierarchy Process (AHP) is to calculate the priority vectors, that is, the weights assigned to the elements of the hierarchy (criteria, sub-criteria, and/or alternatives or variants), by using the information provided in the form of a pairwise comparison matrix. Given a set of elements, and a corresponding pairwise comparison matrix, whose entries evaluate the relative importance of the elements with respect to a given criterion, the final ranking of the given alternatives is evaluated. We investigate some important and natural properties of PCMs called the desirable properties, particularly, the non-dominance, consistency, intensity and coherence, which influence the generated priority vectors. Usually, the priority vector is calculated based on some well-known method, for example, the Eigenvector Method, the Arithmetic Mean Method, the Geometric Mean Method, the Least Square Method, and so forth. The novelty of our approach is that the priority vector is calculated as the solution of an optimization problem where an error objective function is minimised with respect to constraints given by the desirable properties. The properties of the optimal solution are discussed and some illustrating examples are presented. The corresponding software tool has been developed and demonstrated in some examples.
Název v anglickém jazyce
Why We Need Desirable Properties in Pairwise Comparison Methods?
Popis výsledku anglicky
Pairwise comparison matrices (PCMs) are inevitable tools in some important multiple-criteria decision-making methods, for example AHP/ANP, TOPSIS, PROMETHEE and others. In this paper, we investigate some important properties of PCMs which influence the generated priority vectors for the final ranking of the given alternatives. The main subproblem of the Analytic Hierarchy Process (AHP) is to calculate the priority vectors, that is, the weights assigned to the elements of the hierarchy (criteria, sub-criteria, and/or alternatives or variants), by using the information provided in the form of a pairwise comparison matrix. Given a set of elements, and a corresponding pairwise comparison matrix, whose entries evaluate the relative importance of the elements with respect to a given criterion, the final ranking of the given alternatives is evaluated. We investigate some important and natural properties of PCMs called the desirable properties, particularly, the non-dominance, consistency, intensity and coherence, which influence the generated priority vectors. Usually, the priority vector is calculated based on some well-known method, for example, the Eigenvector Method, the Arithmetic Mean Method, the Geometric Mean Method, the Least Square Method, and so forth. The novelty of our approach is that the priority vector is calculated as the solution of an optimization problem where an error objective function is minimised with respect to constraints given by the desirable properties. The properties of the optimal solution are discussed and some illustrating examples are presented. The corresponding software tool has been developed and demonstrated in some examples.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-03085S" target="_blank" >GA21-03085S: Párové porovnání a data mining při podpoře rozhodovacích procesů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF MULTI-CRITERIA DECISION ANALYSIS
ISSN
1057-9214
e-ISSN
1099-1360
Svazek periodika
31
Číslo periodika v rámci svazku
5-6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85211237442