A Consensual Coherent Priority Vector of Pairwise Comparison Matrices in Group Decision-Making
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F23%3AA0000365" target="_blank" >RIV/47813059:19520/23:A0000365 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.researchgate.net/publication/374698114_A_Consensual_Coherent_Priority_Vector_of_Pairwise_Comparison_Matrices_in_Group_Decision-Making" target="_blank" >https://www.researchgate.net/publication/374698114_A_Consensual_Coherent_Priority_Vector_of_Pairwise_Comparison_Matrices_in_Group_Decision-Making</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Consensual Coherent Priority Vector of Pairwise Comparison Matrices in Group Decision-Making
Popis výsledku v původním jazyce
The Analytic Hierarchy Process (AHP) is a method proposed to solve complex multi-criteria decision-making problems. Pairwise comparison methods are often used in AHP to derive the priorities of the successors of an element in the hierarchy. In this paper, we are concerned with group decision-making; that is, given n objects, such as criteria and/or variants, let m decision makers evaluate the n objects (pairwise) with respect to a criterion. The task is then to find a consensual priority vector of the m given n×n reciprocal pairwise comparison matrices. Recalling several desirable properties of the priority vector – consistency, intensity, and coherence – we consider the weakest one of the three, i.e. coherence, in the rest of the paper. In other words, given m coherent priority vectors, each provided by a decision maker of the group, the purpose is to find a single consensual priority vector of the group. To cope with this task, we propose a grade to measure the consensuality of a priority vector. We thus obtain an optimization problem, whose solution yields an optimal consensual ranking of the n given objects.
Název v anglickém jazyce
A Consensual Coherent Priority Vector of Pairwise Comparison Matrices in Group Decision-Making
Popis výsledku anglicky
The Analytic Hierarchy Process (AHP) is a method proposed to solve complex multi-criteria decision-making problems. Pairwise comparison methods are often used in AHP to derive the priorities of the successors of an element in the hierarchy. In this paper, we are concerned with group decision-making; that is, given n objects, such as criteria and/or variants, let m decision makers evaluate the n objects (pairwise) with respect to a criterion. The task is then to find a consensual priority vector of the m given n×n reciprocal pairwise comparison matrices. Recalling several desirable properties of the priority vector – consistency, intensity, and coherence – we consider the weakest one of the three, i.e. coherence, in the rest of the paper. In other words, given m coherent priority vectors, each provided by a decision maker of the group, the purpose is to find a single consensual priority vector of the group. To cope with this task, we propose a grade to measure the consensuality of a priority vector. We thus obtain an optimization problem, whose solution yields an optimal consensual ranking of the n given objects.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-03085S" target="_blank" >GA21-03085S: Párové porovnání a data mining při podpoře rozhodovacích procesů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 41st International Conference on Mathematical Methods in Economics: September 13–15, 2023: Prague, Czech Republic
ISBN
9788011041328
ISSN
2788-3965
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
Czech Society for Operations Research
Místo vydání
Prague
Místo konání akce
Prague
Datum konání akce
13. 9. 2023
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—