A new algorithm for computing priority vector of pairwise comparisons matrix with fuzzy elements
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F22%3AA0000285" target="_blank" >RIV/47813059:19520/22:A0000285 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0020025522011501" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0020025522011501</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2022.10.030" target="_blank" >10.1016/j.ins.2022.10.030</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A new algorithm for computing priority vector of pairwise comparisons matrix with fuzzy elements
Popis výsledku v původním jazyce
Applying the Analytic Hierarchy Process (AHP) in a decision making (DM) problem, fuzzy elements are appropriate whenever the decision maker is uncertain about the value of his/her evaluation of the relative importance of the elements in question, i.e., criteria and/or alternatives. The method, often called the fuzzy AHP, is also used when aggregating crisp pairwise comparisons of a group of decision makers in the group DM problem. In this paper, the DM problem is formulated in a general setting using pairwise comparisons matrices with elements from an Abelian linearly ordered group (alo-group). Such an approach enables extensions of traditional multiplicative, additive, or fuzzy approaches. Here, we propose some desirable properties (consistency, coherency, and intensity) of priority vectors, and derive sufficient conditions for the existence of priority vectors with those properties. In general, the most popular methods for deriving the priority vector – the Eigenvector Method and the Geometric Mean Method – do not always provide priority vectors having these desirable properties. Here, we formulate a new solution algorithm for deriving the priority vector based on a specific optimization problem satisfying the desirable properties under appropriate assumptions. Two illustrating examples of the algorithm are presented and discussed.
Název v anglickém jazyce
A new algorithm for computing priority vector of pairwise comparisons matrix with fuzzy elements
Popis výsledku anglicky
Applying the Analytic Hierarchy Process (AHP) in a decision making (DM) problem, fuzzy elements are appropriate whenever the decision maker is uncertain about the value of his/her evaluation of the relative importance of the elements in question, i.e., criteria and/or alternatives. The method, often called the fuzzy AHP, is also used when aggregating crisp pairwise comparisons of a group of decision makers in the group DM problem. In this paper, the DM problem is formulated in a general setting using pairwise comparisons matrices with elements from an Abelian linearly ordered group (alo-group). Such an approach enables extensions of traditional multiplicative, additive, or fuzzy approaches. Here, we propose some desirable properties (consistency, coherency, and intensity) of priority vectors, and derive sufficient conditions for the existence of priority vectors with those properties. In general, the most popular methods for deriving the priority vector – the Eigenvector Method and the Geometric Mean Method – do not always provide priority vectors having these desirable properties. Here, we formulate a new solution algorithm for deriving the priority vector based on a specific optimization problem satisfying the desirable properties under appropriate assumptions. Two illustrating examples of the algorithm are presented and discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-03085S" target="_blank" >GA21-03085S: Párové porovnání a data mining při podpoře rozhodovacích procesů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Sciences
ISSN
0020-0255
e-ISSN
—
Svazek periodika
615
Číslo periodika v rámci svazku
November 2022
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
103-117
Kód UT WoS článku
000890939400006
EID výsledku v databázi Scopus
2-s2.0-85139857378