Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Desirable Properties of Weighting Vector in Pairwise Comparisons Matrix With Fuzzy Elements

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F20%3AA0000121" target="_blank" >RIV/47813059:19520/20:A0000121 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Desirable Properties of Weighting Vector in Pairwise Comparisons Matrix With Fuzzy Elements

  • Popis výsledku v původním jazyce

    We deal with pairwise comparisons matrix with fuzzy elements (FPCM). Fuzzy elements are appropriate whenever the decision maker (DM) is uncertain about the value of his/her evaluation of the relative importance of elements in question, or, when aggregating crisp pairwise comparisons of a group of decision makers in the group DM problem. The problem is formulated in a general setting investigating pairwise comparisons matrices with elements from abelian linearly ordered group (alo-group). Such an approach enables extensions of traditional multiplicative, additive or fuzzy approaches. Continuing our research in cite{Ramik2018}, here we propose a new order preservation concept based on alpha-cuts. Then we define an innovative concept of (weak) consistency of FPCMs, propose some desirable properties of priority vectors, and derive necessary and sufficient conditions for the existence of coherent vector (CV) and intensity vector (IV) of a FPCM. Finally, we formulate the optimization problem and derive the priority vector with the desirable properties. Illustrating examples are presented and discussed.

  • Název v anglickém jazyce

    Desirable Properties of Weighting Vector in Pairwise Comparisons Matrix With Fuzzy Elements

  • Popis výsledku anglicky

    We deal with pairwise comparisons matrix with fuzzy elements (FPCM). Fuzzy elements are appropriate whenever the decision maker (DM) is uncertain about the value of his/her evaluation of the relative importance of elements in question, or, when aggregating crisp pairwise comparisons of a group of decision makers in the group DM problem. The problem is formulated in a general setting investigating pairwise comparisons matrices with elements from abelian linearly ordered group (alo-group). Such an approach enables extensions of traditional multiplicative, additive or fuzzy approaches. Continuing our research in cite{Ramik2018}, here we propose a new order preservation concept based on alpha-cuts. Then we define an innovative concept of (weak) consistency of FPCMs, propose some desirable properties of priority vectors, and derive necessary and sufficient conditions for the existence of coherent vector (CV) and intensity vector (IV) of a FPCM. Finally, we formulate the optimization problem and derive the priority vector with the desirable properties. Illustrating examples are presented and discussed.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-01246S" target="_blank" >GA18-01246S: Nestandardní optimalizační a rozhodovací metody v manažerských procesech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    38th International Conference on Mathematical Methods in Economics

  • ISBN

    9788075097347

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    481-487

  • Název nakladatele

    Mendel University Brno

  • Místo vydání

    Brno, Czech Republic,

  • Místo konání akce

    Brno

  • Datum konání akce

    10. 9. 2020

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku