Deriving priority vector from pairwise comparisons matrix with fuzzy elements by solving optimization problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F23%3AA0000372" target="_blank" >RIV/47813059:19520/23:A0000372 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s12597-023-00641-4" target="_blank" >http://dx.doi.org/10.1007/s12597-023-00641-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12597-023-00641-4" target="_blank" >10.1007/s12597-023-00641-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deriving priority vector from pairwise comparisons matrix with fuzzy elements by solving optimization problem
Popis výsledku v původním jazyce
Pairwise comparisons matrix with fuzzy elements (FPCM) are appropriate for the decision makers who are uncertain about the relative importance of elements. We can primarily find them in Fuzzy Analytic Hierarchy Process, PROMETHEE, TOPSIS methods, and many exact and heuristic algorithms. They are also useful in aggregating pairwise comparisons, particularly in consensus group decision making problems and they form the basis for many decision-making models as intuitionistic fuzzy relations, pythagorean, q-rung orthopair fuzzy preference relations, hesitant or interval fuzzy sets, and also stochastic judgments. Here, the decision model is formulated by investigating pairwise comparisons matrices (PCMs) with elements from abelian linearly ordered group (alo-group), which enables unifying multiplicative, additive and fuzzy PCMs. Then we define a novel concept of consistency, coherence and intensity of FPCMs, and propose a number of optimization methods for finding a consistent vector, coherent vector and intensity vector of a FPCM satisfying the desirable properties. Finally, two illustrating examples are discussed.
Název v anglickém jazyce
Deriving priority vector from pairwise comparisons matrix with fuzzy elements by solving optimization problem
Popis výsledku anglicky
Pairwise comparisons matrix with fuzzy elements (FPCM) are appropriate for the decision makers who are uncertain about the relative importance of elements. We can primarily find them in Fuzzy Analytic Hierarchy Process, PROMETHEE, TOPSIS methods, and many exact and heuristic algorithms. They are also useful in aggregating pairwise comparisons, particularly in consensus group decision making problems and they form the basis for many decision-making models as intuitionistic fuzzy relations, pythagorean, q-rung orthopair fuzzy preference relations, hesitant or interval fuzzy sets, and also stochastic judgments. Here, the decision model is formulated by investigating pairwise comparisons matrices (PCMs) with elements from abelian linearly ordered group (alo-group), which enables unifying multiplicative, additive and fuzzy PCMs. Then we define a novel concept of consistency, coherence and intensity of FPCMs, and propose a number of optimization methods for finding a consistent vector, coherent vector and intensity vector of a FPCM satisfying the desirable properties. Finally, two illustrating examples are discussed.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-03085S" target="_blank" >GA21-03085S: Párové porovnání a data mining při podpoře rozhodovacích procesů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
OPSEARCH - official publication of the Operational Research Society of India
ISSN
0030-3887
e-ISSN
0975-0320
Svazek periodika
60
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
1045-1062
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85153482875