Higher-order differential represented by connections on prolongations of a fibered manifold
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F00%3A00000034" target="_blank" >RIV/47813059:19610/00:00000034 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Higher-order differential represented by connections on prolongations of a fibered manifold
Popis výsledku v původním jazyce
This long survey paper represents an introduction to a recently developed formalism which is aimed primarily at a systematic description of certain phenomena related to the geometry of systems of differential equations in normal form. These equations arerepresented by connections on prolongations of a fibered manifold. We recalls some notions and results about jet prolongations of sections, morphisms and vector fields, total derivatives, the contact structure and the Cartan distribution on $Jsp kpi$,repeated jets and higher-order connections on $pi$. Then the integrability, the prolongations, reductions and symmetries of higher-order differential equations are studied. Some integration methods of fields of paths are discussed. In fact,since the higher-order connections may be composed with suitable morphisms, they may be viewed as the integral sections of some other connections. Finally, semispray connections are studied.
Název v anglickém jazyce
Higher-order differential represented by connections on prolongations of a fibered manifold
Popis výsledku anglicky
This long survey paper represents an introduction to a recently developed formalism which is aimed primarily at a systematic description of certain phenomena related to the geometry of systems of differential equations in normal form. These equations arerepresented by connections on prolongations of a fibered manifold. We recalls some notions and results about jet prolongations of sections, morphisms and vector fields, total derivatives, the contact structure and the Cartan distribution on $Jsp kpi$,repeated jets and higher-order connections on $pi$. Then the integrability, the prolongations, reductions and symmetries of higher-order differential equations are studied. Some integration methods of fields of paths are discussed. In fact,since the higher-order connections may be composed with suitable morphisms, they may be viewed as the integral sections of some other connections. Finally, semispray connections are studied.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F97%2F0001" target="_blank" >GA201/97/0001: Dynamické systémy</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2000
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Extracta Mathematicae
ISSN
ISSN0213-8743
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
ES - Španělské království
Počet stran výsledku
92
Strana od-do
421-512
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—