Stability and dynamical features of solitary wave solutions for a hydrodynamic-type system taking into account nonlocal effects
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F14%3A%230000457" target="_blank" >RIV/47813059:19610/14:#0000457 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S1007570413005169" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1007570413005169</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cnsns.2013.10.027" target="_blank" >10.1016/j.cnsns.2013.10.027</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stability and dynamical features of solitary wave solutions for a hydrodynamic-type system taking into account nonlocal effects
Popis výsledku v původním jazyce
We consider a hydrodynamic-type system of balance equations for mass and momentum closed by the dynamical equation of state taking into account the effects of spatial nonlocality. We study higher symmetry admitted by this system and establish its non-integrability for the generic values of parameters. A system of ODEs obtained from the system under study through the group theory reduction is investigated. The reduced system is shown to possess a family of the homoclinic solutions describing solitary waves of compression and rarefaction. The waves of compression are shown to be unstable. On the contrary, the waves of rarefaction are likely to be stable. Numerical simulations reveal some peculiarities of solitary waves of rarefaction, and, in particular,the recovery of their shape after the collisions.
Název v anglickém jazyce
Stability and dynamical features of solitary wave solutions for a hydrodynamic-type system taking into account nonlocal effects
Popis výsledku anglicky
We consider a hydrodynamic-type system of balance equations for mass and momentum closed by the dynamical equation of state taking into account the effects of spatial nonlocality. We study higher symmetry admitted by this system and establish its non-integrability for the generic values of parameters. A system of ODEs obtained from the system under study through the group theory reduction is investigated. The reduced system is shown to possess a family of the homoclinic solutions describing solitary waves of compression and rarefaction. The waves of compression are shown to be unstable. On the contrary, the waves of rarefaction are likely to be stable. Numerical simulations reveal some peculiarities of solitary waves of rarefaction, and, in particular,the recovery of their shape after the collisions.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannova, pseudo-Riemannova a afinní diferenciální geometrie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Communications in Nonlinear Science and Numerical Simulation
ISSN
1007-5704
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
1770-1782
Kód UT WoS článku
000328732900011
EID výsledku v databázi Scopus
—