Generalized Dhombres functional equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F17%3AA0000019" target="_blank" >RIV/47813059:19610/17:A0000019 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-61732-9_13" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-61732-9_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-61732-9_13" target="_blank" >10.1007/978-3-319-61732-9_13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalized Dhombres functional equation
Popis výsledku v původním jazyce
We consider the equation f(xf(x)) = phi(f(x)), x > 0, where phi is given, and f is an unknown continuous function (0,infinity)->(0,infinity). This equation was for the first time studied in 1975 by Dhombres (with phi(y) = y^2), later it was considered for other particular choices of phi, and since 2001 for arbitrary continuous function phi. The main problem, a classification of possible solutions and a description of the structure of periodic points contained in the range of the solutions (which appeared to be important way of the classification of solutions), was basically solved. This process involved not only methods from one-dimensional dynamics but also some new methods which could be useful in other problems. In this paper we provide a brief survey.
Název v anglickém jazyce
Generalized Dhombres functional equation
Popis výsledku anglicky
We consider the equation f(xf(x)) = phi(f(x)), x > 0, where phi is given, and f is an unknown continuous function (0,infinity)->(0,infinity). This equation was for the first time studied in 1975 by Dhombres (with phi(y) = y^2), later it was considered for other particular choices of phi, and since 2001 for arbitrary continuous function phi. The main problem, a classification of possible solutions and a description of the structure of periodic points contained in the range of the solutions (which appeared to be important way of the classification of solutions), was basically solved. This process involved not only methods from one-dimensional dynamics but also some new methods which could be useful in other problems. In this paper we provide a brief survey.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Developments in Functional Equations and Related Topics
ISBN
9783319617312
Počet stran výsledku
7
Strana od-do
297-303
Počet stran knihy
352
Název nakladatele
Springer International Publishing
Místo vydání
Cham (Switzerland)
Kód UT WoS kapitoly
—