The equivalence problem for generic four-dimensional metrics with two commuting Killing vectors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F20%3AA0000066" target="_blank" >RIV/47813059:19610/20:A0000066 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10231-019-00924-y" target="_blank" >https://link.springer.com/article/10.1007/s10231-019-00924-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10231-019-00924-y" target="_blank" >10.1007/s10231-019-00924-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The equivalence problem for generic four-dimensional metrics with two commuting Killing vectors
Popis výsledku v původním jazyce
We consider the equivalence problem of four-dimensional semi-Riemannian metrics with the two-dimensional Abelian Killing algebra. In the generic case we determine a semi-invariant frame and a fundamental set of first-order scalar differential invariants suitable for solution of the equivalence problem. Genericity means that the Killing leaves are not null, the metric is not orthogonally transitive (i.e., the distribution orthogonal to the Killing leaves is non-integrable), and two explicitly constructed scalar invariants C rho and lC are nonzero. All the invariants are designed to have tractable coordinate expressions. Assuming the existence of two functionally independent invariants, we solve the equivalence problem in two ways. As an example, we invariantly characterize the Van den Bergh metric. To understand the non-generic cases, we also find all Lambda-vacuum metrics that are generic in the above sense, except that either C rho or lC is zero. In this way we extend the Kundu class to Lambda-vacuum metrics. The results of the paper can be exploited for invariant characterization of classes of metrics and for extension of the set of known solutions of the Einstein equations.
Název v anglickém jazyce
The equivalence problem for generic four-dimensional metrics with two commuting Killing vectors
Popis výsledku anglicky
We consider the equivalence problem of four-dimensional semi-Riemannian metrics with the two-dimensional Abelian Killing algebra. In the generic case we determine a semi-invariant frame and a fundamental set of first-order scalar differential invariants suitable for solution of the equivalence problem. Genericity means that the Killing leaves are not null, the metric is not orthogonally transitive (i.e., the distribution orthogonal to the Killing leaves is non-integrable), and two explicitly constructed scalar invariants C rho and lC are nonzero. All the invariants are designed to have tractable coordinate expressions. Assuming the existence of two functionally independent invariants, we solve the equivalence problem in two ways. As an example, we invariantly characterize the Van den Bergh metric. To understand the non-generic cases, we also find all Lambda-vacuum metrics that are generic in the above sense, except that either C rho or lC is zero. In this way we extend the Kundu class to Lambda-vacuum metrics. The results of the paper can be exploited for invariant characterization of classes of metrics and for extension of the set of known solutions of the Einstein equations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Ústav Eduarda Čecha pro algebru, geometrii a matematickou fyziku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annali di Matematica Pura ed Applicata
ISSN
0373-3114
e-ISSN
1618-1891
Svazek periodika
199
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
38
Strana od-do
1343-1380
Kód UT WoS článku
000494394800001
EID výsledku v databázi Scopus
2-s2.0-85074749914