On pushed wavefronts of monostable equation with unimodal delayed reaction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F21%3AA0000094" target="_blank" >RIV/47813059:19610/21:A0000094 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aimsciences.org/article/doi/10.3934/dcds.2021103" target="_blank" >https://www.aimsciences.org/article/doi/10.3934/dcds.2021103</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/dcds.2021103" target="_blank" >10.3934/dcds.2021103</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On pushed wavefronts of monostable equation with unimodal delayed reaction
Popis výsledku v původním jazyce
We study the Mackey-Glass type monostable delayed reaction diffusion equation with a unimodal birth function g(u). This model, designed to describe evolution of single species populations, is considered here in the presence of the weak Allee effect (g(u0) > g'(0)u0 for some u0 > 0). We focus our attention on the existence of slow monotonic traveling fronts to the equation: under given assumptions, this problem seems to be rather difficult since the usual positivity and monotonicity arguments are not effective. First, we solve the front existence problem for small delays, h is an element of [0, hp], where hp, given by an explicit formula, is optimal in a certain sense. Then we take a representative piece-wise linear unimodal birth function which makes possible explicit computation of traveling fronts. In this case, we find out that a) increase of delay can destroy asymptotically stable pushed fronts; b) the set of all admissible wavefront speeds has usual structure of a semi-infinite interval [c*, +infinity); c) for each h >= 0, the pushed wavefront is unique (if it exists); d) pushed wave can oscillate slowly around the positive equilibrium for sufficiently large delays.
Název v anglickém jazyce
On pushed wavefronts of monostable equation with unimodal delayed reaction
Popis výsledku anglicky
We study the Mackey-Glass type monostable delayed reaction diffusion equation with a unimodal birth function g(u). This model, designed to describe evolution of single species populations, is considered here in the presence of the weak Allee effect (g(u0) > g'(0)u0 for some u0 > 0). We focus our attention on the existence of slow monotonic traveling fronts to the equation: under given assumptions, this problem seems to be rather difficult since the usual positivity and monotonicity arguments are not effective. First, we solve the front existence problem for small delays, h is an element of [0, hp], where hp, given by an explicit formula, is optimal in a certain sense. Then we take a representative piece-wise linear unimodal birth function which makes possible explicit computation of traveling fronts. In this case, we find out that a) increase of delay can destroy asymptotically stable pushed fronts; b) the set of all admissible wavefront speeds has usual structure of a semi-infinite interval [c*, +infinity); c) for each h >= 0, the pushed wavefront is unique (if it exists); d) pushed wave can oscillate slowly around the positive equilibrium for sufficiently large delays.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete and Continuous Dynamical Systems - Series A
ISSN
1078-0947
e-ISSN
1553-5231
Svazek periodika
41
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
5979-6000
Kód UT WoS článku
000704400800018
EID výsledku v databázi Scopus
2-s2.0-85116591531