Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Mapping method of group classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F22%3AA0000118" target="_blank" >RIV/47813059:19610/22:A0000118 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0022247X22002232" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022247X22002232</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2022.126209" target="_blank" >10.1016/j.jmaa.2022.126209</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Mapping method of group classification

  • Popis výsledku v původním jazyce

    We revisit the entire framework of group classification of differential equations. After introducing the notion of weakly similar classes of differential equations, we develop the mapping method of group classification for such classes, which generalizes all the versions of this method that have been presented in the literature. The mapping method is applied to group classification of various classes of Kolmogorov equations and of Fokker-Planck equations in the case of space dimension one. The equivalence groupoids and the equivalence groups of these classes are computed. The group classification problems for these classes with respect to the corresponding equivalence groups are reduced to finding all inequivalent solutions of heat equations with inequivalent potentials admitting Lie-symmetry extensions. This reduction allows us to exhaustively solve the group classification problems for the classes of Kolmogorov and Fokker-Planck equations with time-independent coefficients.

  • Název v anglickém jazyce

    Mapping method of group classification

  • Popis výsledku anglicky

    We revisit the entire framework of group classification of differential equations. After introducing the notion of weakly similar classes of differential equations, we develop the mapping method of group classification for such classes, which generalizes all the versions of this method that have been presented in the literature. The mapping method is applied to group classification of various classes of Kolmogorov equations and of Fokker-Planck equations in the case of space dimension one. The equivalence groupoids and the equivalence groups of these classes are computed. The group classification problems for these classes with respect to the corresponding equivalence groups are reduced to finding all inequivalent solutions of heat equations with inequivalent potentials admitting Lie-symmetry extensions. This reduction allows us to exhaustively solve the group classification problems for the classes of Kolmogorov and Fokker-Planck equations with time-independent coefficients.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

    1096-0813

  • Svazek periodika

    513

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    43

  • Strana od-do

    „126209-1“-„126209-43“

  • Kód UT WoS článku

    000796260000001

  • EID výsledku v databázi Scopus

    2-s2.0-85129246960