Extended symmetry analysis of remarkable (1+2)-dimensional Fokker-Planck equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F23%3AA0000141" target="_blank" >RIV/47813059:19610/23:A0000141 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.cambridge.org/core/journals/european-journal-of-applied-mathematics/article/abs/extended-symmetry-analysis-of-remarkable-12dimensional-fokkerplanck-equation/C825941B001CE386DC5A1D96F86CA101" target="_blank" >https://www.cambridge.org/core/journals/european-journal-of-applied-mathematics/article/abs/extended-symmetry-analysis-of-remarkable-12dimensional-fokkerplanck-equation/C825941B001CE386DC5A1D96F86CA101</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0956792523000074" target="_blank" >10.1017/S0956792523000074</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extended symmetry analysis of remarkable (1+2)-dimensional Fokker-Planck equation
Popis výsledku v původním jazyce
We carry out the extended symmetry analysis of an ultraparabolic Fokker–Planck equation with three independent variables, which is also called the Kolmogorov equation and is singled out within the class of such Fokker–Planck equations by its remarkable symmetry properties. In particular, its essential Lie invariance algebra is eight-dimensional, which is the maximum dimension within the above class. We compute the complete point symmetry pseudogroup of the Fokker–Planck equation using the direct method, analyse its structure and single out its essential subgroup. After listing inequivalent one- and two-dimensional subalgebras of the essential and maximal Lie invariance algebras of this equation, we exhaustively classify its Lie reductions, carry out its peculiar generalised reductions and relate the latter reductions to generating solutions with iterative action of Lie-symmetry operators. As a result, we construct wide families of exact solutions of the Fokker–Planck equation, in particular, those parameterised by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation. We also establish the point similarity of the Fokker–Planck equation to the (1+2)-dimensional Kramers equations whose essential Lie invariance algebras are eight-dimensional, which allows us to find wide families of exact solutions of these Kramers equations in an easy way.
Název v anglickém jazyce
Extended symmetry analysis of remarkable (1+2)-dimensional Fokker-Planck equation
Popis výsledku anglicky
We carry out the extended symmetry analysis of an ultraparabolic Fokker–Planck equation with three independent variables, which is also called the Kolmogorov equation and is singled out within the class of such Fokker–Planck equations by its remarkable symmetry properties. In particular, its essential Lie invariance algebra is eight-dimensional, which is the maximum dimension within the above class. We compute the complete point symmetry pseudogroup of the Fokker–Planck equation using the direct method, analyse its structure and single out its essential subgroup. After listing inequivalent one- and two-dimensional subalgebras of the essential and maximal Lie invariance algebras of this equation, we exhaustively classify its Lie reductions, carry out its peculiar generalised reductions and relate the latter reductions to generating solutions with iterative action of Lie-symmetry operators. As a result, we construct wide families of exact solutions of the Fokker–Planck equation, in particular, those parameterised by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation. We also establish the point similarity of the Fokker–Planck equation to the (1+2)-dimensional Kramers equations whose essential Lie invariance algebras are eight-dimensional, which allows us to find wide families of exact solutions of these Kramers equations in an easy way.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Applied Mathematics
ISSN
0956-7925
e-ISSN
1469-4425
Svazek periodika
34
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
32
Strana od-do
1067-1098
Kód UT WoS článku
000981844100001
EID výsledku v databázi Scopus
2-s2.0-85161069056