Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Extended symmetry analysis of remarkable (1+2)-dimensional Fokker-Planck equation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F23%3AA0000141" target="_blank" >RIV/47813059:19610/23:A0000141 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.cambridge.org/core/journals/european-journal-of-applied-mathematics/article/abs/extended-symmetry-analysis-of-remarkable-12dimensional-fokkerplanck-equation/C825941B001CE386DC5A1D96F86CA101" target="_blank" >https://www.cambridge.org/core/journals/european-journal-of-applied-mathematics/article/abs/extended-symmetry-analysis-of-remarkable-12dimensional-fokkerplanck-equation/C825941B001CE386DC5A1D96F86CA101</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0956792523000074" target="_blank" >10.1017/S0956792523000074</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Extended symmetry analysis of remarkable (1+2)-dimensional Fokker-Planck equation

  • Popis výsledku v původním jazyce

    We carry out the extended symmetry analysis of an ultraparabolic Fokker–Planck equation with three independent variables, which is also called the Kolmogorov equation and is singled out within the class of such Fokker–Planck equations by its remarkable symmetry properties. In particular, its essential Lie invariance algebra is eight-dimensional, which is the maximum dimension within the above class. We compute the complete point symmetry pseudogroup of the Fokker–Planck equation using the direct method, analyse its structure and single out its essential subgroup. After listing inequivalent one- and two-dimensional subalgebras of the essential and maximal Lie invariance algebras of this equation, we exhaustively classify its Lie reductions, carry out its peculiar generalised reductions and relate the latter reductions to generating solutions with iterative action of Lie-symmetry operators. As a result, we construct wide families of exact solutions of the Fokker–Planck equation, in particular, those parameterised by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation. We also establish the point similarity of the Fokker–Planck equation to the (1+2)-dimensional Kramers equations whose essential Lie invariance algebras are eight-dimensional, which allows us to find wide families of exact solutions of these Kramers equations in an easy way.

  • Název v anglickém jazyce

    Extended symmetry analysis of remarkable (1+2)-dimensional Fokker-Planck equation

  • Popis výsledku anglicky

    We carry out the extended symmetry analysis of an ultraparabolic Fokker–Planck equation with three independent variables, which is also called the Kolmogorov equation and is singled out within the class of such Fokker–Planck equations by its remarkable symmetry properties. In particular, its essential Lie invariance algebra is eight-dimensional, which is the maximum dimension within the above class. We compute the complete point symmetry pseudogroup of the Fokker–Planck equation using the direct method, analyse its structure and single out its essential subgroup. After listing inequivalent one- and two-dimensional subalgebras of the essential and maximal Lie invariance algebras of this equation, we exhaustively classify its Lie reductions, carry out its peculiar generalised reductions and relate the latter reductions to generating solutions with iterative action of Lie-symmetry operators. As a result, we construct wide families of exact solutions of the Fokker–Planck equation, in particular, those parameterised by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation. We also establish the point similarity of the Fokker–Planck equation to the (1+2)-dimensional Kramers equations whose essential Lie invariance algebras are eight-dimensional, which allows us to find wide families of exact solutions of these Kramers equations in an easy way.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    European Journal of Applied Mathematics

  • ISSN

    0956-7925

  • e-ISSN

    1469-4425

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    32

  • Strana od-do

    1067-1098

  • Kód UT WoS článku

    000981844100001

  • EID výsledku v databázi Scopus

    2-s2.0-85161069056