Birkhoff centre and backward limit points
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F23%3AA0000143" target="_blank" >RIV/47813059:19610/23:A0000143 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0166864122003406" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0166864122003406</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.topol.2022.108338" target="_blank" >10.1016/j.topol.2022.108338</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Birkhoff centre and backward limit points
Popis výsledku v původním jazyce
We suggest one complete and one partial solution to the selected problems presented in the recently published article On Backward Attractors of Interval Maps(Hantakova and Roth (2021) [15]). Specifically we prove a conjecture proposing a characterisation of sets of ss-limit points (i.e. limit points of all accumulation points of backward orbit branches of a specific point) for graph maps. We show that ss-limit sets coincide with Birkhoff centre <(Rec(f))over bar> and that the condition for a point to belong to its ss-limit set is equivalent to belonging to the ss-limit set of an other point. In the second part of the paper we deal with genericity of having all s alpha-limit sets closed and we prove that maps with not all s alpha-limit sets closed are dense in C-0([0,1]), which partially solves an open problem also suggested in the aforementioned article.
Název v anglickém jazyce
Birkhoff centre and backward limit points
Popis výsledku anglicky
We suggest one complete and one partial solution to the selected problems presented in the recently published article On Backward Attractors of Interval Maps(Hantakova and Roth (2021) [15]). Specifically we prove a conjecture proposing a characterisation of sets of ss-limit points (i.e. limit points of all accumulation points of backward orbit branches of a specific point) for graph maps. We show that ss-limit sets coincide with Birkhoff centre <(Rec(f))over bar> and that the condition for a point to belong to its ss-limit set is equivalent to belonging to the ss-limit set of an other point. In the second part of the paper we deal with genericity of having all s alpha-limit sets closed and we prove that maps with not all s alpha-limit sets closed are dense in C-0([0,1]), which partially solves an open problem also suggested in the aforementioned article.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Topology and its Applications
ISSN
0166-8641
e-ISSN
1879-3207
Svazek periodika
324
Číslo periodika v rámci svazku
february
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
„108338-1“-„108338-7“
Kód UT WoS článku
000928174900004
EID výsledku v databázi Scopus
2-s2.0-85143316348