Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On backward attractors of interval maps

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F21%3AA0000092" target="_blank" >RIV/47813059:19610/21:A0000092 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/1361-6544/ac23b6/" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6544/ac23b6/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6544/ac23b6" target="_blank" >10.1088/1361-6544/ac23b6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On backward attractors of interval maps

  • Popis výsledku v původním jazyce

    Special alpha-limit sets (s alpha-limit sets) combine together all accumulation points of all backward orbit branches of a point x under a noninvertible map. The most important question about them is whether or not they are closed. We challenge the notion of s alpha-limit sets as backward attractors for interval maps by showing that they need not be closed. This disproves a conjecture by Kolyada, Misiurewicz, and Snoha. We give a criterion in terms of Xiong's attracting centre that completely characterizes which interval maps have all s alpha-limit sets closed, and we show that our criterion is satisfied in the piecewise monotone case. We apply Blokh's models of solenoidal and basic omega-limit sets to solve four additional conjectures by Kolyada, Misiurewicz, and Snoha relating topological properties of s alpha-limit sets to the dynamics within them. For example, we show that the isolated points in a s alpha-limit set of an interval map are always periodic, the non-degenerate components are the union of one or two transitive cycles of intervals, and the rest of the s alpha-limit set is nowhere dense. Moreover, we show that s alpha-limit sets in the interval are always both F-sigma and G(delta) . Finally, since s alpha-limit sets need not be closed, we propose a new notion of beta-limit sets to serve as backward attractors. The beta-limit set of x is the smallest closed set to which all backward orbit branches of x converge, and it coincides with the closure of the s alpha-limit set. At the end of the paper we suggest several new problems about backward attractors.

  • Název v anglickém jazyce

    On backward attractors of interval maps

  • Popis výsledku anglicky

    Special alpha-limit sets (s alpha-limit sets) combine together all accumulation points of all backward orbit branches of a point x under a noninvertible map. The most important question about them is whether or not they are closed. We challenge the notion of s alpha-limit sets as backward attractors for interval maps by showing that they need not be closed. This disproves a conjecture by Kolyada, Misiurewicz, and Snoha. We give a criterion in terms of Xiong's attracting centre that completely characterizes which interval maps have all s alpha-limit sets closed, and we show that our criterion is satisfied in the piecewise monotone case. We apply Blokh's models of solenoidal and basic omega-limit sets to solve four additional conjectures by Kolyada, Misiurewicz, and Snoha relating topological properties of s alpha-limit sets to the dynamics within them. For example, we show that the isolated points in a s alpha-limit set of an interval map are always periodic, the non-degenerate components are the union of one or two transitive cycles of intervals, and the rest of the s alpha-limit set is nowhere dense. Moreover, we show that s alpha-limit sets in the interval are always both F-sigma and G(delta) . Finally, since s alpha-limit sets need not be closed, we propose a new notion of beta-limit sets to serve as backward attractors. The beta-limit set of x is the smallest closed set to which all backward orbit branches of x converge, and it coincides with the closure of the s alpha-limit set. At the end of the paper we suggest several new problems about backward attractors.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nonlinearity

  • ISSN

    0951-7715

  • e-ISSN

    1361-6544

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    31

  • Strana od-do

    7415-7445

  • Kód UT WoS článku

    000698466200001

  • EID výsledku v databázi Scopus

    2-s2.0-85117688797