A Note on the Krylov Solvability of Compact Normal Operators on Hilbert Space
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F23%3AA0000145" target="_blank" >RIV/47813059:19610/23:A0000145 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11785-023-01413-0" target="_blank" >https://link.springer.com/article/10.1007/s11785-023-01413-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11785-023-01413-0" target="_blank" >10.1007/s11785-023-01413-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Note on the Krylov Solvability of Compact Normal Operators on Hilbert Space
Popis výsledku v původním jazyce
We analyse the Krylov solvability of inverse linear problems on Hilbert space H where the underlying operator is compact and normal. Krylov solvability is an important feature of inverse linear problems that has profound implications in theoretical and applied numerical analysis as it is critical to understand the utility of Krylov based methods for solving inverse problems. Our results explicitly describe for the first time the Krylov subspace for such operators given any datum vector g is an element of H, as well as prove that all inverse linear problems are Krylov solvable provided that g is in the range of such an operator. We therefore expand our knowledge of the class of Krylov solvable operators to include the normal compact operators. We close the study by proving an isomorphism between the closed Krylov subspace for a general bounded normal operator and an L-2-measure space based on the scalar spectral measure.
Název v anglickém jazyce
A Note on the Krylov Solvability of Compact Normal Operators on Hilbert Space
Popis výsledku anglicky
We analyse the Krylov solvability of inverse linear problems on Hilbert space H where the underlying operator is compact and normal. Krylov solvability is an important feature of inverse linear problems that has profound implications in theoretical and applied numerical analysis as it is critical to understand the utility of Krylov based methods for solving inverse problems. Our results explicitly describe for the first time the Krylov subspace for such operators given any datum vector g is an element of H, as well as prove that all inverse linear problems are Krylov solvable provided that g is in the range of such an operator. We therefore expand our knowledge of the class of Krylov solvable operators to include the normal compact operators. We close the study by proving an isomorphism between the closed Krylov subspace for a general bounded normal operator and an L-2-measure space based on the scalar spectral measure.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Complex Analysis and Operator Theory
ISSN
1661-8254
e-ISSN
1661-8262
Svazek periodika
17
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
„109-1“-„109-12“
Kód UT WoS článku
001066912100001
EID výsledku v databázi Scopus
2-s2.0-85171555783