Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Lie reductions and exact solutions of dispersionless Nizhnik equation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F24%3AA0000169" target="_blank" >RIV/47813059:19610/24:A0000169 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s13324-024-00925-y" target="_blank" >https://link.springer.com/article/10.1007/s13324-024-00925-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13324-024-00925-y" target="_blank" >10.1007/s13324-024-00925-y</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Lie reductions and exact solutions of dispersionless Nizhnik equation

  • Popis výsledku v původním jazyce

    We exhaustively classify the Lie reductions of the real dispersionless Nizhnik equation to partial differential equations in two independent variables and to ordinary differential equations. Lie and point symmetries of reduced equations are comprehensively studied, including the analysis of which of them correspond to hidden symmetries of the original equation. If necessary, associated Lie reductions of a nonlinear Lax representation of the dispersionless Nizhnik equation are carried out as well. As a result, we construct wide families of new invariant solutions of this equation in explicit form in terms of elementary, Lambert and hypergeometric functions as well as in parametric or implicit form. We show that Lie reductions to algebraic equations lead to no new solutions of this equation in addition to the constructed ones. Multiplicative separation of variables is used for illustrative construction of non-invariant solutions.

  • Název v anglickém jazyce

    Lie reductions and exact solutions of dispersionless Nizhnik equation

  • Popis výsledku anglicky

    We exhaustively classify the Lie reductions of the real dispersionless Nizhnik equation to partial differential equations in two independent variables and to ordinary differential equations. Lie and point symmetries of reduced equations are comprehensively studied, including the analysis of which of them correspond to hidden symmetries of the original equation. If necessary, associated Lie reductions of a nonlinear Lax representation of the dispersionless Nizhnik equation are carried out as well. As a result, we construct wide families of new invariant solutions of this equation in explicit form in terms of elementary, Lambert and hypergeometric functions as well as in parametric or implicit form. We show that Lie reductions to algebraic equations lead to no new solutions of this equation in addition to the constructed ones. Multiplicative separation of variables is used for illustrative construction of non-invariant solutions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Analysis and Mathematical Physics

  • ISSN

    1664-2368

  • e-ISSN

    1664-235X

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    56

  • Strana od-do

    „82-1“-„82-56“

  • Kód UT WoS článku

    001262985900001

  • EID výsledku v databázi Scopus

    2-s2.0-85197552487