Lie reductions and exact solutions of dispersionless Nizhnik equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F24%3AA0000169" target="_blank" >RIV/47813059:19610/24:A0000169 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s13324-024-00925-y" target="_blank" >https://link.springer.com/article/10.1007/s13324-024-00925-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13324-024-00925-y" target="_blank" >10.1007/s13324-024-00925-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lie reductions and exact solutions of dispersionless Nizhnik equation
Popis výsledku v původním jazyce
We exhaustively classify the Lie reductions of the real dispersionless Nizhnik equation to partial differential equations in two independent variables and to ordinary differential equations. Lie and point symmetries of reduced equations are comprehensively studied, including the analysis of which of them correspond to hidden symmetries of the original equation. If necessary, associated Lie reductions of a nonlinear Lax representation of the dispersionless Nizhnik equation are carried out as well. As a result, we construct wide families of new invariant solutions of this equation in explicit form in terms of elementary, Lambert and hypergeometric functions as well as in parametric or implicit form. We show that Lie reductions to algebraic equations lead to no new solutions of this equation in addition to the constructed ones. Multiplicative separation of variables is used for illustrative construction of non-invariant solutions.
Název v anglickém jazyce
Lie reductions and exact solutions of dispersionless Nizhnik equation
Popis výsledku anglicky
We exhaustively classify the Lie reductions of the real dispersionless Nizhnik equation to partial differential equations in two independent variables and to ordinary differential equations. Lie and point symmetries of reduced equations are comprehensively studied, including the analysis of which of them correspond to hidden symmetries of the original equation. If necessary, associated Lie reductions of a nonlinear Lax representation of the dispersionless Nizhnik equation are carried out as well. As a result, we construct wide families of new invariant solutions of this equation in explicit form in terms of elementary, Lambert and hypergeometric functions as well as in parametric or implicit form. We show that Lie reductions to algebraic equations lead to no new solutions of this equation in addition to the constructed ones. Multiplicative separation of variables is used for illustrative construction of non-invariant solutions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Analysis and Mathematical Physics
ISSN
1664-2368
e-ISSN
1664-235X
Svazek periodika
14
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
56
Strana od-do
„82-1“-„82-56“
Kód UT WoS článku
001262985900001
EID výsledku v databázi Scopus
2-s2.0-85197552487