Admissible transformations and Lie symmetries of linear systems of second-order ordinary differential equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F24%3AA0000170" target="_blank" >RIV/47813059:19610/24:A0000170 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022247X24004657" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022247X24004657</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2024.128543" target="_blank" >10.1016/j.jmaa.2024.128543</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Admissible transformations and Lie symmetries of linear systems of second-order ordinary differential equations
Popis výsledku v původním jazyce
We revisit the results on admissible transformations between normal linear systems of second-order ordinary differential equations with an arbitrary number of dependent variables under several appropriate gauges of the arbitrary elements parameterizing these systems. For each class from the constructed chain of nested gauged classes of such systems, we single out its singular subclass, which appears to consist of systems being similar to the elementary (free particle) system whereas the regular subclass is the complement of the singular one. This allows us to exhaustively describe the equivalence groupoids of the above classes as well as of their singular and regular subclasses. Applying various algebraic techniques, we establish principal properties of Lie symmetries of the systems under consideration and outline ways for completely classifying these symmetries. In particular, we compute the sharp lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by systems from each of the above classes and subclasses. We also show how equivalence transformations and Lie symmetries can be used for reduction of order of such systems and their integration. As an illustrative example of using the theory developed, we solve the complete group classification problems for all these classes in the case of two dependent variables.
Název v anglickém jazyce
Admissible transformations and Lie symmetries of linear systems of second-order ordinary differential equations
Popis výsledku anglicky
We revisit the results on admissible transformations between normal linear systems of second-order ordinary differential equations with an arbitrary number of dependent variables under several appropriate gauges of the arbitrary elements parameterizing these systems. For each class from the constructed chain of nested gauged classes of such systems, we single out its singular subclass, which appears to consist of systems being similar to the elementary (free particle) system whereas the regular subclass is the complement of the singular one. This allows us to exhaustively describe the equivalence groupoids of the above classes as well as of their singular and regular subclasses. Applying various algebraic techniques, we establish principal properties of Lie symmetries of the systems under consideration and outline ways for completely classifying these symmetries. In particular, we compute the sharp lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by systems from each of the above classes and subclasses. We also show how equivalence transformations and Lie symmetries can be used for reduction of order of such systems and their integration. As an illustrative example of using the theory developed, we solve the complete group classification problems for all these classes in the case of two dependent variables.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Svazek periodika
539
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
51
Strana od-do
„128543-1“-„128543-51“
Kód UT WoS článku
001258348400001
EID výsledku v databázi Scopus
2-s2.0-85195081035