Unconstrained Lagrangian Variational Principles for the Einstein Field Equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19630%2F23%3AA0000297" target="_blank" >RIV/47813059:19630/23:A0000297 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1099-4300/25/2/337" target="_blank" >https://www.mdpi.com/1099-4300/25/2/337</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e25020337" target="_blank" >10.3390/e25020337</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unconstrained Lagrangian Variational Principles for the Einstein Field Equations
Popis výsledku v původním jazyce
This paper deals with the problem of establishing a systematic theoretical formulation of variational principles for the continuum gravitational field dynamics of classical General Relativity (GR). In this reference, the existence of multiple Lagrangian functions underlying the Einstein field equations (EFE) but having different physical connotations is pointed out. Given validity of the Principle of Manifest Covariance (PMC), a set of corresponding variational principles can be constructed. These are classified in two categories, respectively, referred to as constrained and unconstrained Lagrangian principles. They differ for the normalization properties required to be satisfied by the variational fields with respect to the analogous conditions holding for the extremal fields. However, it is proved that only the unconstrained framework correctly reproduces EFE as extremal equations. Remarkably, the synchronous variational principle recently discovered belongs to this category. Instead, the constrained class can reproduce the Hilbert-Einstein formulation, although its validity demands unavoidably violation of PMC. In view of the mathematical structure of GR based on tensor representation and its conceptual meaning, it is therefore concluded that the unconstrained variational setting should be regarded as the natural and more fundamental framework for the establishment of the variational theory of EFE and the consequent formulation of consistent Hamiltonian and quantum gravity theories.
Název v anglickém jazyce
Unconstrained Lagrangian Variational Principles for the Einstein Field Equations
Popis výsledku anglicky
This paper deals with the problem of establishing a systematic theoretical formulation of variational principles for the continuum gravitational field dynamics of classical General Relativity (GR). In this reference, the existence of multiple Lagrangian functions underlying the Einstein field equations (EFE) but having different physical connotations is pointed out. Given validity of the Principle of Manifest Covariance (PMC), a set of corresponding variational principles can be constructed. These are classified in two categories, respectively, referred to as constrained and unconstrained Lagrangian principles. They differ for the normalization properties required to be satisfied by the variational fields with respect to the analogous conditions holding for the extremal fields. However, it is proved that only the unconstrained framework correctly reproduces EFE as extremal equations. Remarkably, the synchronous variational principle recently discovered belongs to this category. Instead, the constrained class can reproduce the Hilbert-Einstein formulation, although its validity demands unavoidably violation of PMC. In view of the mathematical structure of GR based on tensor representation and its conceptual meaning, it is therefore concluded that the unconstrained variational setting should be regarded as the natural and more fundamental framework for the establishment of the variational theory of EFE and the consequent formulation of consistent Hamiltonian and quantum gravity theories.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Entropy
ISSN
1099-4300
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
27
Strana od-do
„337-1“-„337-27“
Kód UT WoS článku
000945040800001
EID výsledku v databázi Scopus
2-s2.0-85148936692