Hamiltonian approach to GR - Part 1: covariant theory of classical gravity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F17%3AA0000016" target="_blank" >RIV/47813059:19240/17:A0000016 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-017-4854-1" target="_blank" >https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-017-4854-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1140/epjc/s10052-017-4854-1" target="_blank" >10.1140/epjc/s10052-017-4854-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hamiltonian approach to GR - Part 1: covariant theory of classical gravity
Popis výsledku v původním jazyce
A challenging issue in General Relativity concerns the determination of the manifestly covariant continuum Hamiltonian structure underlying the Einstein field equations and the related formulation of the corresponding covariant Hamilton-Jacobi theory. The task is achieved by adopting a synchronous variational principle requiring distinction between the prescribed deterministic metric tensor (g) over cap (r) equivalent to {(g) over cap _(mu nu) (r)} solution of the Einstein field equations which determines the geometry of the background spacetime and suitable variational fields x equivalent to {g, pi} obeying an appropriate set of continuum Hamilton equations, referred to here as GR-Hamilton equations. It is shown that a prerequisite for reaching such a goal is that of casting the same equations in evolutionary form by means of a Lagrangian parametrization for a suitably reduced canonical state. As a result, the corresponding Hamilton-Jacobi theory is established in manifestly covariant form. Physical implications of the theory are discussed. These include the investigation of the structural stability of the GR-Hamilton equations with respect to vacuum solutions of the Einstein equations, assuming that wave-like perturbations are governed by the canonical evolution equations.
Název v anglickém jazyce
Hamiltonian approach to GR - Part 1: covariant theory of classical gravity
Popis výsledku anglicky
A challenging issue in General Relativity concerns the determination of the manifestly covariant continuum Hamiltonian structure underlying the Einstein field equations and the related formulation of the corresponding covariant Hamilton-Jacobi theory. The task is achieved by adopting a synchronous variational principle requiring distinction between the prescribed deterministic metric tensor (g) over cap (r) equivalent to {(g) over cap _(mu nu) (r)} solution of the Einstein field equations which determines the geometry of the background spacetime and suitable variational fields x equivalent to {g, pi} obeying an appropriate set of continuum Hamilton equations, referred to here as GR-Hamilton equations. It is shown that a prerequisite for reaching such a goal is that of casting the same equations in evolutionary form by means of a Lagrangian parametrization for a suitably reduced canonical state. As a result, the corresponding Hamilton-Jacobi theory is established in manifestly covariant form. Physical implications of the theory are discussed. These include the investigation of the structural stability of the GR-Hamilton equations with respect to vacuum solutions of the Einstein equations, assuming that wave-like perturbations are governed by the canonical evolution equations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Physical Journal C
ISSN
1434-6044
e-ISSN
1434-6052
Svazek periodika
77
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
'329-1'-'329-16'
Kód UT WoS článku
000401899900001
EID výsledku v databázi Scopus
2-s2.0-85019833905