Quantum-Wave Equation and Heisenberg Inequalities of Covariant Quantum Gravity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F17%3AA0000014" target="_blank" >RIV/47813059:19240/17:A0000014 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.mdpi.com/1099-4300/19/7/339" target="_blank" >http://www.mdpi.com/1099-4300/19/7/339</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e19070339" target="_blank" >10.3390/e19070339</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantum-Wave Equation and Heisenberg Inequalities of Covariant Quantum Gravity
Popis výsledku v původním jazyce
Key aspects of the manifestly-covariant theory of quantum gravity (Cremaschini and Tessarotto 2015-2017) are investigated. These refer, first, to the establishment of the four-scalar, manifestly-covariant evolution quantum wave equation, denoted as covariant quantum gravity (CQG) wave equation, which advances the quantum state psi associated with a prescribed background space-time. In this paper, the CQG-wave equation is proved to follow at once by means of a Hamilton-Jacobi quantization of the classical variational tensor field g equivalent to {g_(mu nu)} and its conjugate momentum, referred to as (canonical) g-quantization. The same equation is also shown to be variational and to follow from a synchronous variational principle identified here with the quantum Hamilton variational principle. The corresponding quantum hydrodynamic equations are then obtained upon introducing the Madelung representation for psi, which provides an equivalent statistical interpretation of the CQG-wave equation. Finally, the quantum state y is proven to fulfill generalized Heisenberg inequalities, relating the statistical measurement errors of quantum observables. These are shown to be represented in terms of the standard deviations of the metric tensor g equivalent to {g_(mu nu)} and its quantum conjugate momentum operator.
Název v anglickém jazyce
Quantum-Wave Equation and Heisenberg Inequalities of Covariant Quantum Gravity
Popis výsledku anglicky
Key aspects of the manifestly-covariant theory of quantum gravity (Cremaschini and Tessarotto 2015-2017) are investigated. These refer, first, to the establishment of the four-scalar, manifestly-covariant evolution quantum wave equation, denoted as covariant quantum gravity (CQG) wave equation, which advances the quantum state psi associated with a prescribed background space-time. In this paper, the CQG-wave equation is proved to follow at once by means of a Hamilton-Jacobi quantization of the classical variational tensor field g equivalent to {g_(mu nu)} and its conjugate momentum, referred to as (canonical) g-quantization. The same equation is also shown to be variational and to follow from a synchronous variational principle identified here with the quantum Hamilton variational principle. The corresponding quantum hydrodynamic equations are then obtained upon introducing the Madelung representation for psi, which provides an equivalent statistical interpretation of the CQG-wave equation. Finally, the quantum state y is proven to fulfill generalized Heisenberg inequalities, relating the statistical measurement errors of quantum observables. These are shown to be represented in terms of the standard deviations of the metric tensor g equivalent to {g_(mu nu)} and its quantum conjugate momentum operator.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Entropy
ISSN
1099-4300
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
20
Strana od-do
'339-1'-'339-20'
Kód UT WoS článku
000406701500049
EID výsledku v databázi Scopus
2-s2.0-85022203801