Hamilton-Jacobi Wave Theory in Manifestly-Covariant Classical and Quantum Gravity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F19%3AA0000554" target="_blank" >RIV/47813059:19240/19:A0000554 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-8994/11/4/592" target="_blank" >https://www.mdpi.com/2073-8994/11/4/592</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym11040592" target="_blank" >10.3390/sym11040592</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hamilton-Jacobi Wave Theory in Manifestly-Covariant Classical and Quantum Gravity
Popis výsledku v původním jazyce
The axiomatic geometric structure which lays at the basis of Covariant Classical and Quantum Gravity Theory is investigated. This refers specifically to fundamental aspects of the manifestly-covariant Hamiltonian representation of General Relativity which has recently been developed in the framework of a synchronous deDonder-Weyl variational formulation (2015-2019). In such a setting, the canonical variables defining the canonical state acquire different tensorial orders, with the momentum conjugate to the field variable g_(mu nu) being realized by the third-order 4-tensor Pi_(mu nu)^alpha. It is shown that this generates a corresponding Hamilton-Jacobi theory in which the Hamilton principal function is a 4-tensor S^alpha . However, in order to express the Hamilton equations as evolution equations and apply standard quantization methods, the canonical variables must have the same tensorial dimension. This can be achieved by projection of the canonical momentum field along prescribed tensorial directions associated with geodesic trajectories defined with respect to the background space-time for either classical test particles or raylights. It is proved that this permits to recover a Hamilton principal function in the appropriate form of 4-scalar type. The corresponding Hamilton-Jacobi wave theory is studied and implications for the manifestly-covariant quantum gravity theory are discussed. This concerns in particular the possibility of achieving at quantum level physical solutions describing massive or massless quanta of the gravitational field.
Název v anglickém jazyce
Hamilton-Jacobi Wave Theory in Manifestly-Covariant Classical and Quantum Gravity
Popis výsledku anglicky
The axiomatic geometric structure which lays at the basis of Covariant Classical and Quantum Gravity Theory is investigated. This refers specifically to fundamental aspects of the manifestly-covariant Hamiltonian representation of General Relativity which has recently been developed in the framework of a synchronous deDonder-Weyl variational formulation (2015-2019). In such a setting, the canonical variables defining the canonical state acquire different tensorial orders, with the momentum conjugate to the field variable g_(mu nu) being realized by the third-order 4-tensor Pi_(mu nu)^alpha. It is shown that this generates a corresponding Hamilton-Jacobi theory in which the Hamilton principal function is a 4-tensor S^alpha . However, in order to express the Hamilton equations as evolution equations and apply standard quantization methods, the canonical variables must have the same tensorial dimension. This can be achieved by projection of the canonical momentum field along prescribed tensorial directions associated with geodesic trajectories defined with respect to the background space-time for either classical test particles or raylights. It is proved that this permits to recover a Hamilton principal function in the appropriate form of 4-scalar type. The corresponding Hamilton-Jacobi wave theory is studied and implications for the manifestly-covariant quantum gravity theory are discussed. This concerns in particular the possibility of achieving at quantum level physical solutions describing massive or massless quanta of the gravitational field.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry
ISSN
2073-8994
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
26
Strana od-do
„592-1“-„592-26“
Kód UT WoS článku
000467314400151
EID výsledku v databázi Scopus
2-s2.0-85065465461