Infinite tower of higher-curvature corrections: Quasinormal modes and late-time behavior of D-dimensional regular black holes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19630%2F24%3AA0000374" target="_blank" >RIV/47813059:19630/24:A0000374 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.104005" target="_blank" >https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.104005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.109.104005" target="_blank" >10.1103/PhysRevD.109.104005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Infinite tower of higher-curvature corrections: Quasinormal modes and late-time behavior of D-dimensional regular black holes
Popis výsledku v původním jazyce
Recently, Bueno, Cano, and Hennigar [Regular black holes from pure gravity, arXiv:2403.04827.] proposed a generic approach for incorporating an infinite tower of higher -curvature corrections into the Einstein theory. In this study, we compute quasinormal modes for certain regular D -dimensional black holes resulting from this infinite series of higher -curvature corrections, specifically focusing on the D -dimensional extensions of the Bardeen and Hayward black holes. We demonstrate that while the fundamental mode is minimally affected by moderate coupling constants, the higher overtones exhibit significant sensitivity even to small coupling values, yielding unconventional modes characterized by vanishing real oscillation frequencies. When comparing the frequencies derived from the metric truncated at several orders of higher -curvature corrections with those resulting from the infinite series of terms, we observe a rapid convergence of the frequencies to their limit for the complete regular black hole. This validates the extensive research conducted on specific theories with a finite number of higher -curvature corrections, such as the Lovelock theory.
Název v anglickém jazyce
Infinite tower of higher-curvature corrections: Quasinormal modes and late-time behavior of D-dimensional regular black holes
Popis výsledku anglicky
Recently, Bueno, Cano, and Hennigar [Regular black holes from pure gravity, arXiv:2403.04827.] proposed a generic approach for incorporating an infinite tower of higher -curvature corrections into the Einstein theory. In this study, we compute quasinormal modes for certain regular D -dimensional black holes resulting from this infinite series of higher -curvature corrections, specifically focusing on the D -dimensional extensions of the Bardeen and Hayward black holes. We demonstrate that while the fundamental mode is minimally affected by moderate coupling constants, the higher overtones exhibit significant sensitivity even to small coupling values, yielding unconventional modes characterized by vanishing real oscillation frequencies. When comparing the frequencies derived from the metric truncated at several orders of higher -curvature corrections with those resulting from the infinite series of terms, we observe a rapid convergence of the frequencies to their limit for the complete regular black hole. This validates the extensive research conducted on specific theories with a finite number of higher -curvature corrections, such as the Lovelock theory.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
—
Svazek periodika
109
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
„104005-1“-„104005-13“
Kód UT WoS článku
001236189100009
EID výsledku v databázi Scopus
2-s2.0-85192299952