Dymnikova black hole from an infinite tower of higher-curvature corrections
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19630%2F24%3AA0000377" target="_blank" >RIV/47813059:19630/24:A0000377 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0370269324005033?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0370269324005033?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physletb.2024.138945" target="_blank" >10.1016/j.physletb.2024.138945</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dymnikova black hole from an infinite tower of higher-curvature corrections
Popis výsledku v původním jazyce
Recently, in [1], it was demonstrated that various regular black hole metrics can be derived within a theory featuring an infinite number of higher curvature corrections to General Relativity. Moreover, truncating this infinite series at the first few orders already yields a reliable approximation of the observable characteristics of such black holes [2]. Here, we further establish the existence of another regular black hole solution, particularly the D-dimensional extension of the Dymnikova black hole, within the equations of motion incorporating an infinite tower of higher-curvature corrections. This solution is essentially nonperturbative in the coupling parameter, rendering the action, if it exists, incapable of being approximated by a finite number of powers of the curvature. In addition, we compute the dominant quasinormal frequencies of such black holes using both the Bernstein polynomial method and the 13th order WKB method with Pad & eacute; approximants, obtaining a high degree of agreement between them.
Název v anglickém jazyce
Dymnikova black hole from an infinite tower of higher-curvature corrections
Popis výsledku anglicky
Recently, in [1], it was demonstrated that various regular black hole metrics can be derived within a theory featuring an infinite number of higher curvature corrections to General Relativity. Moreover, truncating this infinite series at the first few orders already yields a reliable approximation of the observable characteristics of such black holes [2]. Here, we further establish the existence of another regular black hole solution, particularly the D-dimensional extension of the Dymnikova black hole, within the equations of motion incorporating an infinite tower of higher-curvature corrections. This solution is essentially nonperturbative in the coupling parameter, rendering the action, if it exists, incapable of being approximated by a finite number of powers of the curvature. In addition, we compute the dominant quasinormal frequencies of such black holes using both the Bernstein polynomial method and the 13th order WKB method with Pad & eacute; approximants, obtaining a high degree of agreement between them.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physics Letters B
ISSN
0370-2693
e-ISSN
1873-2445
Svazek periodika
856
Číslo periodika v rámci svazku
September 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
5
Strana od-do
„138945-1“-„138945-5“
Kód UT WoS článku
001296564000001
EID výsledku v databázi Scopus
2-s2.0-85201122802