Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Planck Length Emerging as the Invariant Quantum Minimum Effective Length Determined by the Heisenberg Uncertainty Principle in Manifestly Covariant Quantum Gravity Theory

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19630%2F24%3AA0000383" target="_blank" >RIV/47813059:19630/24:A0000383 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2073-8994/16/8/1042" target="_blank" >https://www.mdpi.com/2073-8994/16/8/1042</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/sym16081042" target="_blank" >10.3390/sym16081042</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Planck Length Emerging as the Invariant Quantum Minimum Effective Length Determined by the Heisenberg Uncertainty Principle in Manifestly Covariant Quantum Gravity Theory

  • Popis výsledku v původním jazyce

    The meaning of the quantum minimum effective length that should distinguish the quantum nature of a gravitational field is investigated in the context of manifestly covariant quantum gravity theory (CQG-theory). In such a framework, the possible occurrence of a non-vanishing minimum length requires one to identify it necessarily with a 4-scalar proper length s.It is shown that the latter must be treated in a statistical way and associated with a lower bound in the error measurement of distance, namely to be identified with a standard deviation. In this reference, the existence of a minimum length is proven based on a canonical form of Heisenberg inequality that is peculiar to CQG-theory in predicting massive quantum gravitons with finite path-length trajectories. As a notable outcome, it is found that, apart from a numerical factor of O1, the invariant minimum length is realized by the Planck length, which, therefore, arises as a constitutive element of quantum gravity phenomenology. This theoretical result permits one to establish the intrinsic minimum-length character of CQG-theory, which emerges consistently with manifest covariance as one of its foundational properties and is rooted both on the mathematical structure of canonical Hamiltonian quantization, as well as on the logic underlying the Heisenberg uncertainty principle.

  • Název v anglickém jazyce

    Planck Length Emerging as the Invariant Quantum Minimum Effective Length Determined by the Heisenberg Uncertainty Principle in Manifestly Covariant Quantum Gravity Theory

  • Popis výsledku anglicky

    The meaning of the quantum minimum effective length that should distinguish the quantum nature of a gravitational field is investigated in the context of manifestly covariant quantum gravity theory (CQG-theory). In such a framework, the possible occurrence of a non-vanishing minimum length requires one to identify it necessarily with a 4-scalar proper length s.It is shown that the latter must be treated in a statistical way and associated with a lower bound in the error measurement of distance, namely to be identified with a standard deviation. In this reference, the existence of a minimum length is proven based on a canonical form of Heisenberg inequality that is peculiar to CQG-theory in predicting massive quantum gravitons with finite path-length trajectories. As a notable outcome, it is found that, apart from a numerical factor of O1, the invariant minimum length is realized by the Planck length, which, therefore, arises as a constitutive element of quantum gravity phenomenology. This theoretical result permits one to establish the intrinsic minimum-length character of CQG-theory, which emerges consistently with manifest covariance as one of its foundational properties and is rooted both on the mathematical structure of canonical Hamiltonian quantization, as well as on the logic underlying the Heisenberg uncertainty principle.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SYMMETRY-BASEL

  • ISSN

    2073-8994

  • e-ISSN

  • Svazek periodika

    16

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    21

  • Strana od-do

    „1042-1“-„1042-21“

  • Kód UT WoS článku

    001304806200001

  • EID výsledku v databázi Scopus

    2-s2.0-85202550061