Planck Length Emerging as the Invariant Quantum Minimum Effective Length Determined by the Heisenberg Uncertainty Principle in Manifestly Covariant Quantum Gravity Theory
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19630%2F24%3AA0000383" target="_blank" >RIV/47813059:19630/24:A0000383 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-8994/16/8/1042" target="_blank" >https://www.mdpi.com/2073-8994/16/8/1042</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym16081042" target="_blank" >10.3390/sym16081042</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Planck Length Emerging as the Invariant Quantum Minimum Effective Length Determined by the Heisenberg Uncertainty Principle in Manifestly Covariant Quantum Gravity Theory
Popis výsledku v původním jazyce
The meaning of the quantum minimum effective length that should distinguish the quantum nature of a gravitational field is investigated in the context of manifestly covariant quantum gravity theory (CQG-theory). In such a framework, the possible occurrence of a non-vanishing minimum length requires one to identify it necessarily with a 4-scalar proper length s.It is shown that the latter must be treated in a statistical way and associated with a lower bound in the error measurement of distance, namely to be identified with a standard deviation. In this reference, the existence of a minimum length is proven based on a canonical form of Heisenberg inequality that is peculiar to CQG-theory in predicting massive quantum gravitons with finite path-length trajectories. As a notable outcome, it is found that, apart from a numerical factor of O1, the invariant minimum length is realized by the Planck length, which, therefore, arises as a constitutive element of quantum gravity phenomenology. This theoretical result permits one to establish the intrinsic minimum-length character of CQG-theory, which emerges consistently with manifest covariance as one of its foundational properties and is rooted both on the mathematical structure of canonical Hamiltonian quantization, as well as on the logic underlying the Heisenberg uncertainty principle.
Název v anglickém jazyce
Planck Length Emerging as the Invariant Quantum Minimum Effective Length Determined by the Heisenberg Uncertainty Principle in Manifestly Covariant Quantum Gravity Theory
Popis výsledku anglicky
The meaning of the quantum minimum effective length that should distinguish the quantum nature of a gravitational field is investigated in the context of manifestly covariant quantum gravity theory (CQG-theory). In such a framework, the possible occurrence of a non-vanishing minimum length requires one to identify it necessarily with a 4-scalar proper length s.It is shown that the latter must be treated in a statistical way and associated with a lower bound in the error measurement of distance, namely to be identified with a standard deviation. In this reference, the existence of a minimum length is proven based on a canonical form of Heisenberg inequality that is peculiar to CQG-theory in predicting massive quantum gravitons with finite path-length trajectories. As a notable outcome, it is found that, apart from a numerical factor of O1, the invariant minimum length is realized by the Planck length, which, therefore, arises as a constitutive element of quantum gravity phenomenology. This theoretical result permits one to establish the intrinsic minimum-length character of CQG-theory, which emerges consistently with manifest covariance as one of its foundational properties and is rooted both on the mathematical structure of canonical Hamiltonian quantization, as well as on the logic underlying the Heisenberg uncertainty principle.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SYMMETRY-BASEL
ISSN
2073-8994
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
21
Strana od-do
„1042-1“-„1042-21“
Kód UT WoS článku
001304806200001
EID výsledku v databázi Scopus
2-s2.0-85202550061