Potential role of machine learning techniques for modeling the hardness of OPH steels
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23210%2F21%3A43959715" target="_blank" >RIV/49777513:23210/21:43959715 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081723:_____/21:00560556
Výsledek na webu
<a href="https://reader.elsevier.com/reader/sd/pii/S2352492820328178?token=C84D7B3A28D3CB9D5FFECDF3AA6180F09F78E8B462EB5785DAEE0C54FEF00DBAA74D0F188DE972D2D2334EF8D72AFC64" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S2352492820328178?token=C84D7B3A28D3CB9D5FFECDF3AA6180F09F78E8B462EB5785DAEE0C54FEF00DBAA74D0F188DE972D2D2334EF8D72AFC64</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.mtcomm.2020.101806" target="_blank" >10.1016/j.mtcomm.2020.101806</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Potential role of machine learning techniques for modeling the hardness of OPH steels
Popis výsledku v původním jazyce
Oxide Precipitation Hardened (OPH) alloys are a new generation of Oxide Dispersion Strengthened (ODS) alloys which have outstanding mechanical properties based on using appropriate heat treatment (HT). The production consists of mechanical alloying, which leads to a ductile matrix and hard oxide dispersion; however, the initial state shows a fine grain structure and basic mechanical properties. The composition, production process parameters, and HT affect the hardness of the OPH. In order to obtain a better understanding of the hardness of OPH alloys, three machine learning techniques were developed using ANN, ANFIS and SVMR to simulate the hardness. Moreover, the importance and intensity of the impact of each parameter on the hardness of OPH alloys were discussed. Based on the experimental results achieved by the authors, the composition of OPH alloys (Al, Mo, Fe, Cr, Ta, Y, and O), HT conditions, and Mechanical Alloying (MA) was used to train the models as inputs. The validity of the models was measured by different statistical criteria such as R, k, k′, m, n, and Rm. The mean absolute error for prediction of the hardness values at the test set was about 32 HV (ANFIS model), 37 HV (ANN model), and 44 HV (SVMR model). The results demonstrated that the ANFIS model predicts more accurately than the other methods. The sensitivity analysis and the influence of valid parameters were studied for the ANFIS model. It was revealed that HT temperature has a great effect on the hardness of the OPH alloys.
Název v anglickém jazyce
Potential role of machine learning techniques for modeling the hardness of OPH steels
Popis výsledku anglicky
Oxide Precipitation Hardened (OPH) alloys are a new generation of Oxide Dispersion Strengthened (ODS) alloys which have outstanding mechanical properties based on using appropriate heat treatment (HT). The production consists of mechanical alloying, which leads to a ductile matrix and hard oxide dispersion; however, the initial state shows a fine grain structure and basic mechanical properties. The composition, production process parameters, and HT affect the hardness of the OPH. In order to obtain a better understanding of the hardness of OPH alloys, three machine learning techniques were developed using ANN, ANFIS and SVMR to simulate the hardness. Moreover, the importance and intensity of the impact of each parameter on the hardness of OPH alloys were discussed. Based on the experimental results achieved by the authors, the composition of OPH alloys (Al, Mo, Fe, Cr, Ta, Y, and O), HT conditions, and Mechanical Alloying (MA) was used to train the models as inputs. The validity of the models was measured by different statistical criteria such as R, k, k′, m, n, and Rm. The mean absolute error for prediction of the hardness values at the test set was about 32 HV (ANFIS model), 37 HV (ANN model), and 44 HV (SVMR model). The results demonstrated that the ANFIS model predicts more accurately than the other methods. The sensitivity analysis and the influence of valid parameters were studied for the ANFIS model. It was revealed that HT temperature has a great effect on the hardness of the OPH alloys.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01641S" target="_blank" >GA17-01641S: Zlepšení vlastností a komplexní charakterizace nové generace oxidy precipitačně vytvrzených ocelí na bázi Fe-Al-O</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials Today Communications
ISSN
2352-4928
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
March 2021
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000634320600004
EID výsledku v databázi Scopus
2-s2.0-85095758378