Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Potential role of machine learning techniques for modeling the hardness of OPH steels

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F21%3A00560556" target="_blank" >RIV/68081723:_____/21:00560556 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/49777513:23210/21:43959715

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2352492820328178?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352492820328178?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.mtcomm.2020.101806" target="_blank" >10.1016/j.mtcomm.2020.101806</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Potential role of machine learning techniques for modeling the hardness of OPH steels

  • Popis výsledku v původním jazyce

    Oxide Precipitation Hardened (OPH) alloys are a new generation of Oxide Dispersion Strengthened (ODS) alloys which have outstanding mechanical properties based on using appropriate heat treatment (HT). The production consists of mechanical alloying, which leads to a ductile matrix and hard oxide dispersion, however, the initial state shows a fine grain structure and basic mechanical properties. The composition, production process parameters, and HT affect the hardness of the OPH. In order to obtain a better understanding of the hardness of OPH alloys, three machine learning techniques were developed using ANN, ANFIS and SVMR to simulate the hardness. Moreover, the importance and intensity of the impact of each parameter on the hardness of OPH alloys were discussed. Based on the experimental results achieved by the authors, the composition of OPH alloys (Al, Mo, Fe, Cr, Ta, Y, and O), HT conditions, and Mechanical Alloying (MA) was used to train the models as inputs. The validity of the models was measured by different statistical criteria such as R, k, k', m, n, and Rm. The mean absolute error for prediction of the hardness values at the test set was about 32 HV (ANFIS model), 37 HV (ANN model), and 44 HV (SVMR model). The results demonstrated that the ANFIS model predicts more accurately than the other methods. The sensitivity analysis and the influence of valid parameters were studied for the ANFIS model. It was revealed that HT temperature has a great effect on the hardness of the OPH alloys.

  • Název v anglickém jazyce

    Potential role of machine learning techniques for modeling the hardness of OPH steels

  • Popis výsledku anglicky

    Oxide Precipitation Hardened (OPH) alloys are a new generation of Oxide Dispersion Strengthened (ODS) alloys which have outstanding mechanical properties based on using appropriate heat treatment (HT). The production consists of mechanical alloying, which leads to a ductile matrix and hard oxide dispersion, however, the initial state shows a fine grain structure and basic mechanical properties. The composition, production process parameters, and HT affect the hardness of the OPH. In order to obtain a better understanding of the hardness of OPH alloys, three machine learning techniques were developed using ANN, ANFIS and SVMR to simulate the hardness. Moreover, the importance and intensity of the impact of each parameter on the hardness of OPH alloys were discussed. Based on the experimental results achieved by the authors, the composition of OPH alloys (Al, Mo, Fe, Cr, Ta, Y, and O), HT conditions, and Mechanical Alloying (MA) was used to train the models as inputs. The validity of the models was measured by different statistical criteria such as R, k, k', m, n, and Rm. The mean absolute error for prediction of the hardness values at the test set was about 32 HV (ANFIS model), 37 HV (ANN model), and 44 HV (SVMR model). The results demonstrated that the ANFIS model predicts more accurately than the other methods. The sensitivity analysis and the influence of valid parameters were studied for the ANFIS model. It was revealed that HT temperature has a great effect on the hardness of the OPH alloys.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-01641S" target="_blank" >GA17-01641S: Zlepšení vlastností a komplexní charakterizace nové generace oxidy precipitačně vytvrzených ocelí na bázi Fe-Al-O</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Materials Today Communications

  • ISSN

    2352-4928

  • e-ISSN

    2352-4928

  • Svazek periodika

    26

  • Číslo periodika v rámci svazku

    MAR

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    101806

  • Kód UT WoS článku

    000634320600004

  • EID výsledku v databázi Scopus

    2-s2.0-85095758378