Ergonomic Design of a Workplace Using Virtual Reality and a Motion Capture Suit
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23210%2F22%3A43964914" target="_blank" >RIV/49777513:23210/22:43964914 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/12/4/2150" target="_blank" >https://www.mdpi.com/2076-3417/12/4/2150</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app12042150" target="_blank" >10.3390/app12042150</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ergonomic Design of a Workplace Using Virtual Reality and a Motion Capture Suit
Popis výsledku v původním jazyce
Musculoskeletal disorders are some of the most frequent manual work disorders. Employers worldwide pay high costs for their treatment and prevention. We present an innovative method for designing an ergonomic workplace. This method uses new technologies and supports not only ergonomics, but also a general improvement in the designing of the manufacturing process. Although many researchers claim that there is a huge potential for using new disruptive technologies like virtual reality and motion capture in ergonomics, there is still a lack of a comprehensive methodological basis for implementing these technologies. Our approach was designed using the expert group method. We can validate the manufacturing process and the ergonomics using a motion capture (MoCap) suit and a head-mounted display (HMD). There are no legislative restrictions for the tools which are used for ergonomic analyses, so we can use our outputs for workplace scoring. Firstly, we measure the anthropometrics of the proband. Then the proband is immersed in virtual reality and they go through a manufacturing process during which ergonomics data are collected. The design of a particular workplace or multiple workplaces can be validated based on the reactions, measurements, and input in real-time. After processing the data, the workplace can be adjusted accordingly. The proposed method has a time and economic benefit for workplace design, optimisation of workplace ergonomics, and shortens the time required for designing the production line layout. It also includes optional steps for validation using conventional methods. These steps were used for method validation on a representative workplace using on-site experiments. We validated it on a group of 20 healthy operators working in automotive production (age 22 to 35). A comparison study describes the classic methods of workplace ergonomics evaluation, compares the classic evaluation using biomechanical analysis, modern evaluation using a MoCap suit, and connection with virtual reality. We have proved the validity of the method using the comparison study. The results also showed other potential issues which can be further examined: like the role of peripheral vision or haptic feedback.
Název v anglickém jazyce
Ergonomic Design of a Workplace Using Virtual Reality and a Motion Capture Suit
Popis výsledku anglicky
Musculoskeletal disorders are some of the most frequent manual work disorders. Employers worldwide pay high costs for their treatment and prevention. We present an innovative method for designing an ergonomic workplace. This method uses new technologies and supports not only ergonomics, but also a general improvement in the designing of the manufacturing process. Although many researchers claim that there is a huge potential for using new disruptive technologies like virtual reality and motion capture in ergonomics, there is still a lack of a comprehensive methodological basis for implementing these technologies. Our approach was designed using the expert group method. We can validate the manufacturing process and the ergonomics using a motion capture (MoCap) suit and a head-mounted display (HMD). There are no legislative restrictions for the tools which are used for ergonomic analyses, so we can use our outputs for workplace scoring. Firstly, we measure the anthropometrics of the proband. Then the proband is immersed in virtual reality and they go through a manufacturing process during which ergonomics data are collected. The design of a particular workplace or multiple workplaces can be validated based on the reactions, measurements, and input in real-time. After processing the data, the workplace can be adjusted accordingly. The proposed method has a time and economic benefit for workplace design, optimisation of workplace ergonomics, and shortens the time required for designing the production line layout. It also includes optional steps for validation using conventional methods. These steps were used for method validation on a representative workplace using on-site experiments. We validated it on a group of 20 healthy operators working in automotive production (age 22 to 35). A comparison study describes the classic methods of workplace ergonomics evaluation, compares the classic evaluation using biomechanical analysis, modern evaluation using a MoCap suit, and connection with virtual reality. We have proved the validity of the method using the comparison study. The results also showed other potential issues which can be further examined: like the role of peripheral vision or haptic feedback.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences
ISSN
2076-3417
e-ISSN
2076-3417
Svazek periodika
12
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
20
Strana od-do
nestrankovano
Kód UT WoS článku
000767155300001
EID výsledku v databázi Scopus
2-s2.0-85124935858