Porovnání schopností různých druhů neuronových sítí pro účely shlukové analýzy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F09%3A00504919" target="_blank" >RIV/49777513:23220/09:00504919 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
čeština
Název v původním jazyce
Porovnání schopností různých druhů neuronových sítí pro účely shlukové analýzy
Popis výsledku v původním jazyce
For cluster analysis purpose we can use several types of artificial neural networks. We can choose self-organizing networks or networks with teacher. Neural networks with teacher need the data set with correct pre-classification for the training phase. After the training process these networks are able to classify by teaching class. Self-organizing networks (known as the networks with competitive learning) are able to self-classify and make clusters, identifying clustering data. This principle is in fact similar to classic statistical cluster analysis method. This article is focused to all kinds of neural networks, which are proper for purpose of cluster analysis (multi-layer perceptron networks, RBF networks, linear networks and networks with competitive learning) and appreciate the possibilities for use to both cluster analysis methods.
Název v anglickém jazyce
The comparison of neural networks abilities for cluster analysis purpose
Popis výsledku anglicky
For cluster analysis purpose we can use several types of artificial neural networks. We can choose self-organizing networks or networks with teacher. Neural networks with teacher need the data set with correct pre-classification for the training phase. After the training process these networks are able to classify by teaching class. Self-organizing networks (known as the networks with competitive learning) are able to self-classify and make clusters, identifying clustering data. This principle is in fact similar to classic statistical cluster analysis method. This article is focused to all kinds of neural networks, which are proper for purpose of cluster analysis (multi-layer perceptron networks, RBF networks, linear networks and networks with competitive learning) and appreciate the possibilities for use to both cluster analysis methods.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JB - Senzory, čidla, měření a regulace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů