Adaptive weighted meridian nonlinear filter used for filtering of signal with impulsive noise
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F10%3A00503613" target="_blank" >RIV/49777513:23220/10:00503613 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive weighted meridian nonlinear filter used for filtering of signal with impulsive noise
Popis výsledku v původním jazyce
The median, weighted median, myriad and weighted myriad filters have recently been proposed as a class of nonlinear filters for robust non-Gaussian signal processing in impulsive noise environments. A broad range of statistical processes is characterizedby the generalized Gaussian statistics. For instance, the Gaussian and Laplacian probability density functions are special cases of generalized Gaussian statistics. Moreover, the linear and median filtering structures are statistically related to the maximum likelihood estimates of location under Gaussian and Laplacian statistics, respectively. Recently proposed myriad filtering is based on the maximum likelihood estimate of location under Cauchy statistics. An analogous relationship is formed here forthe Laplacian statistics, as the ratio of Laplacian statistics yields the distribution referred here to as the Meridian. Therefore, the Meridian distribution is also a member of the generalized Cauchy family. Based on the maximum likelih
Název v anglickém jazyce
Adaptive weighted meridian nonlinear filter used for filtering of signal with impulsive noise
Popis výsledku anglicky
The median, weighted median, myriad and weighted myriad filters have recently been proposed as a class of nonlinear filters for robust non-Gaussian signal processing in impulsive noise environments. A broad range of statistical processes is characterizedby the generalized Gaussian statistics. For instance, the Gaussian and Laplacian probability density functions are special cases of generalized Gaussian statistics. Moreover, the linear and median filtering structures are statistically related to the maximum likelihood estimates of location under Gaussian and Laplacian statistics, respectively. Recently proposed myriad filtering is based on the maximum likelihood estimate of location under Cauchy statistics. An analogous relationship is formed here forthe Laplacian statistics, as the ratio of Laplacian statistics yields the distribution referred here to as the Meridian. Therefore, the Meridian distribution is also a member of the generalized Cauchy family. Based on the maximum likelih
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Recent advances in circuits, systems, signals
ISBN
978-960-474-226-4
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
WSEAS Press
Místo vydání
Athens
Místo konání akce
Malta
Datum konání akce
1. 1. 2010
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—