Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improved accuracy of model predictive control of induction motor drive using FPGA

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F19%3A43956625" target="_blank" >RIV/49777513:23220/19:43956625 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/abstract/document/8753242" target="_blank" >https://ieeexplore.ieee.org/abstract/document/8753242</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/PRECEDE.2019.8753242" target="_blank" >10.1109/PRECEDE.2019.8753242</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improved accuracy of model predictive control of induction motor drive using FPGA

  • Popis výsledku v původním jazyce

    Finite control set model predictive control (FCS-MPC) is one of successful model predictive control approaches in electric drives which offers effective solution to multi variable multi criteria problems. The optimal control is found by “brute force” search over the limited set of possible control actions. Due to a discrete nature of power converters FCS-MPC is particularly well suited for use in electric drives. The performance of the control is closely related to accuracy of the model of controlled system. Conventional way of modeling electric drives is to include only simple model of the converter with ideal components with no voltage drops or effect of dead times. This simple mathematical converter description is computationally cheap enough to be implemented by conventional control hardware. On the other hand, the accuracy of the prediction is limited which may negatively impact the performance of the control. In this paper, we propose to design detailed mathematical model of the drive including the mathematical description of the inverter which allows us to address the problems associated with dead times and semiconductor voltage drops. Modeling those inverter nonlinear effects can enhance the control accuracy especially in non-nominal drive conditions (e.g. low speeds). On the other hand the computational requirements increases. We propose to use FPGA to implement the control algorithm using fixed-point arithmetics with high level of pipelining resulting in very fast execution times while keeping FPGA resources low. The performance of proposed solution is verified by simulations and experiments on the laboratory prototype of induction motor drive.

  • Název v anglickém jazyce

    Improved accuracy of model predictive control of induction motor drive using FPGA

  • Popis výsledku anglicky

    Finite control set model predictive control (FCS-MPC) is one of successful model predictive control approaches in electric drives which offers effective solution to multi variable multi criteria problems. The optimal control is found by “brute force” search over the limited set of possible control actions. Due to a discrete nature of power converters FCS-MPC is particularly well suited for use in electric drives. The performance of the control is closely related to accuracy of the model of controlled system. Conventional way of modeling electric drives is to include only simple model of the converter with ideal components with no voltage drops or effect of dead times. This simple mathematical converter description is computationally cheap enough to be implemented by conventional control hardware. On the other hand, the accuracy of the prediction is limited which may negatively impact the performance of the control. In this paper, we propose to design detailed mathematical model of the drive including the mathematical description of the inverter which allows us to address the problems associated with dead times and semiconductor voltage drops. Modeling those inverter nonlinear effects can enhance the control accuracy especially in non-nominal drive conditions (e.g. low speeds). On the other hand the computational requirements increases. We propose to use FPGA to implement the control algorithm using fixed-point arithmetics with high level of pipelining resulting in very fast execution times while keeping FPGA resources low. The performance of proposed solution is verified by simulations and experiments on the laboratory prototype of induction motor drive.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings PRECEDE 2019 : 2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE)

  • ISBN

    978-1-5386-9414-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    216-221

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Quanzhou, China

  • Datum konání akce

    31. 5. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000490536300041