Cloud-based machine learning techniques implemented by microsoft azure for designing power amplifiers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F21%3A43963862" target="_blank" >RIV/49777513:23220/21:43963862 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9666639" target="_blank" >https://ieeexplore.ieee.org/document/9666639</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/UEMCON53757.2021.9666639" target="_blank" >10.1109/UEMCON53757.2021.9666639</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cloud-based machine learning techniques implemented by microsoft azure for designing power amplifiers
Popis výsledku v původním jazyce
Designing power amplifiers based on the demanded power and frequency is one of the challenging processes of circuits design in electrical engineering. This is best understood when it comes to thermal noises and other unwanted agents. This is why the application of cloud-based methods can be beneficial to save time and money for designing such complex systems. In this paper, several machine learning (ML) approaches have been used to design a class E amplifier. In this regard, the proposed methods, which are implemented via Microsoft Azure, are used to model and predict the circuit element values of the class E amplifier. In order to reach a reliable design, some important unwanted factors such as nonlinear parasitic elements of the transistor are considered. The results demonstrated that not only can the proposed could-based techniques estimate such elements accurately, but also working with such tools are really easy.
Název v anglickém jazyce
Cloud-based machine learning techniques implemented by microsoft azure for designing power amplifiers
Popis výsledku anglicky
Designing power amplifiers based on the demanded power and frequency is one of the challenging processes of circuits design in electrical engineering. This is best understood when it comes to thermal noises and other unwanted agents. This is why the application of cloud-based methods can be beneficial to save time and money for designing such complex systems. In this paper, several machine learning (ML) approaches have been used to design a class E amplifier. In this regard, the proposed methods, which are implemented via Microsoft Azure, are used to model and predict the circuit element values of the class E amplifier. In order to reach a reliable design, some important unwanted factors such as nonlinear parasitic elements of the transistor are considered. The results demonstrated that not only can the proposed could-based techniques estimate such elements accurately, but also working with such tools are really easy.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_069%2F0009855" target="_blank" >EF18_069/0009855: Elektrotechnické technologie s vysokým podílem vestavěné inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (IEEE UEMCON)
ISBN
978-1-66540-690-1
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
0041-0044
Název nakladatele
IEEE
Místo vydání
Piscaway
Místo konání akce
virtual, New York, USA
Datum konání akce
1. 12. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—