Clustering-based reliability assessment of smart grids by fuzzy c-means algorithm considering direct cyber–physical interdependencies and system uncertainties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F22%3A43965208" target="_blank" >RIV/49777513:23220/22:43965208 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2352467722000819" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352467722000819</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.segan.2022.100757" target="_blank" >10.1016/j.segan.2022.100757</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Clustering-based reliability assessment of smart grids by fuzzy c-means algorithm considering direct cyber–physical interdependencies and system uncertainties
Popis výsledku v původním jazyce
The steadily growing deployment of cyber systems in smart grids (SGs) has highlighted the impacts of cyber–physical interdependencies (CPIs). Although much attention has been paid to the reliability evaluation of SGs considering the system uncertainties and CPIs by Monte Carlo simulation (MCS), the computation time is one of the essential challenges of MCS-based methods. This research tries to overcome the discussed challenge by developing a new clustering-based reliability evaluation method considering the direct CPIs (DCPIs) and stochastic behaviors of renewable distributed generation units (RDGUs) and the demand side. In the proposed method, the Fuzzy c-means (FCM) clustering algorithm has been used to reduce the number of scenarios for uncertain parameters besides the DCPIs. Determining the appropriate alternatives for the number of clusters of stochastic parameters in various cases based on cyber network topologies, DG technologies, and the penetration levels of RDGUs is another contribution of this paper. Test results of applying the proposed method to an actual test system illustrate the advantages of the proposed clustering-based method. The comparison of the proposed method with MCS shows the computation time could be reduced from 21658 s to 210 s (99%), while less than 1% EENS error appears.
Název v anglickém jazyce
Clustering-based reliability assessment of smart grids by fuzzy c-means algorithm considering direct cyber–physical interdependencies and system uncertainties
Popis výsledku anglicky
The steadily growing deployment of cyber systems in smart grids (SGs) has highlighted the impacts of cyber–physical interdependencies (CPIs). Although much attention has been paid to the reliability evaluation of SGs considering the system uncertainties and CPIs by Monte Carlo simulation (MCS), the computation time is one of the essential challenges of MCS-based methods. This research tries to overcome the discussed challenge by developing a new clustering-based reliability evaluation method considering the direct CPIs (DCPIs) and stochastic behaviors of renewable distributed generation units (RDGUs) and the demand side. In the proposed method, the Fuzzy c-means (FCM) clustering algorithm has been used to reduce the number of scenarios for uncertain parameters besides the DCPIs. Determining the appropriate alternatives for the number of clusters of stochastic parameters in various cases based on cyber network topologies, DG technologies, and the penetration levels of RDGUs is another contribution of this paper. Test results of applying the proposed method to an actual test system illustrate the advantages of the proposed clustering-based method. The comparison of the proposed method with MCS shows the computation time could be reduced from 21658 s to 210 s (99%), while less than 1% EENS error appears.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainable Energy, Grids and Networks
ISSN
2352-4677
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
September 2022
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
24
Strana od-do
1-24
Kód UT WoS článku
000807419100014
EID výsledku v databázi Scopus
2-s2.0-85130721546