Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A novel clustering-based method for reliability assessment of cyber-physical microgrids considering cyber interdependencies and information transmission errors

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F22%3A43965024" target="_blank" >RIV/49777513:23220/22:43965024 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0306261922004378" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0306261922004378</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apenergy.2022.119032" target="_blank" >10.1016/j.apenergy.2022.119032</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A novel clustering-based method for reliability assessment of cyber-physical microgrids considering cyber interdependencies and information transmission errors

  • Popis výsledku v původním jazyce

    In recent years, the evolution of microgrids (MGs) toward a complex interacted cyber-physical system is significant, which has received much attention. Cyber-physical MGs (CPMGs) are vulnerable to various cyberphysical interdependencies mainly. Therefore, the reliability evaluation of such systems is a crucial issue. Several research works have focused on the reliability assessment of CPMGs in the literature. However, there is a research gap in developing fast and accurate models to assess the reliability of CPMGs, simultaneously considering cyber and physical failures, cyber-power interdependencies, and information transmission errors. This article aims to fill such a knowledge gap by developing a new clustering-based method to evaluate the reliability of CPMGs. The scenarios for information transmission errors are generated by the Monte Carlo simulation (MCS), besides uncertain physical parameters, e.g., the output power of renewable distributed generations (DGs). Afterward, the clustering algorithms are used to reduce the number of scenarios. In this paper, the k-means clustering algorithm has been selected to cluster the scenarios. The introduced clustering-based method is applied to a CPMG, and test results are compared to available MCS-based studies. The inaccuracy of the proposed clustering-based method is less than 3%, while its execution time is about 22 times faster than MCS-based ones. The comparative test results under various scenarios like available methods, neglecting the cyber failures and information errors illustrate the advantages of this research. The comparative test results illustrate the accuracy of the reliability calculations, while the execution time is desired.

  • Název v anglickém jazyce

    A novel clustering-based method for reliability assessment of cyber-physical microgrids considering cyber interdependencies and information transmission errors

  • Popis výsledku anglicky

    In recent years, the evolution of microgrids (MGs) toward a complex interacted cyber-physical system is significant, which has received much attention. Cyber-physical MGs (CPMGs) are vulnerable to various cyberphysical interdependencies mainly. Therefore, the reliability evaluation of such systems is a crucial issue. Several research works have focused on the reliability assessment of CPMGs in the literature. However, there is a research gap in developing fast and accurate models to assess the reliability of CPMGs, simultaneously considering cyber and physical failures, cyber-power interdependencies, and information transmission errors. This article aims to fill such a knowledge gap by developing a new clustering-based method to evaluate the reliability of CPMGs. The scenarios for information transmission errors are generated by the Monte Carlo simulation (MCS), besides uncertain physical parameters, e.g., the output power of renewable distributed generations (DGs). Afterward, the clustering algorithms are used to reduce the number of scenarios. In this paper, the k-means clustering algorithm has been selected to cluster the scenarios. The introduced clustering-based method is applied to a CPMG, and test results are compared to available MCS-based studies. The inaccuracy of the proposed clustering-based method is less than 3%, while its execution time is about 22 times faster than MCS-based ones. The comparative test results under various scenarios like available methods, neglecting the cyber failures and information errors illustrate the advantages of this research. The comparative test results illustrate the accuracy of the reliability calculations, while the execution time is desired.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    APPLIED ENERGY

  • ISSN

    0306-2619

  • e-ISSN

    1872-9118

  • Svazek periodika

    315

  • Číslo periodika v rámci svazku

    June 2022

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    21

  • Strana od-do

    1-21

  • Kód UT WoS článku

    000793663600003

  • EID výsledku v databázi Scopus

    2-s2.0-85127122024