A novel clustering-based method for reliability assessment of cyber-physical microgrids considering cyber interdependencies and information transmission errors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F22%3A43965024" target="_blank" >RIV/49777513:23220/22:43965024 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0306261922004378" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0306261922004378</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apenergy.2022.119032" target="_blank" >10.1016/j.apenergy.2022.119032</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel clustering-based method for reliability assessment of cyber-physical microgrids considering cyber interdependencies and information transmission errors
Popis výsledku v původním jazyce
In recent years, the evolution of microgrids (MGs) toward a complex interacted cyber-physical system is significant, which has received much attention. Cyber-physical MGs (CPMGs) are vulnerable to various cyberphysical interdependencies mainly. Therefore, the reliability evaluation of such systems is a crucial issue. Several research works have focused on the reliability assessment of CPMGs in the literature. However, there is a research gap in developing fast and accurate models to assess the reliability of CPMGs, simultaneously considering cyber and physical failures, cyber-power interdependencies, and information transmission errors. This article aims to fill such a knowledge gap by developing a new clustering-based method to evaluate the reliability of CPMGs. The scenarios for information transmission errors are generated by the Monte Carlo simulation (MCS), besides uncertain physical parameters, e.g., the output power of renewable distributed generations (DGs). Afterward, the clustering algorithms are used to reduce the number of scenarios. In this paper, the k-means clustering algorithm has been selected to cluster the scenarios. The introduced clustering-based method is applied to a CPMG, and test results are compared to available MCS-based studies. The inaccuracy of the proposed clustering-based method is less than 3%, while its execution time is about 22 times faster than MCS-based ones. The comparative test results under various scenarios like available methods, neglecting the cyber failures and information errors illustrate the advantages of this research. The comparative test results illustrate the accuracy of the reliability calculations, while the execution time is desired.
Název v anglickém jazyce
A novel clustering-based method for reliability assessment of cyber-physical microgrids considering cyber interdependencies and information transmission errors
Popis výsledku anglicky
In recent years, the evolution of microgrids (MGs) toward a complex interacted cyber-physical system is significant, which has received much attention. Cyber-physical MGs (CPMGs) are vulnerable to various cyberphysical interdependencies mainly. Therefore, the reliability evaluation of such systems is a crucial issue. Several research works have focused on the reliability assessment of CPMGs in the literature. However, there is a research gap in developing fast and accurate models to assess the reliability of CPMGs, simultaneously considering cyber and physical failures, cyber-power interdependencies, and information transmission errors. This article aims to fill such a knowledge gap by developing a new clustering-based method to evaluate the reliability of CPMGs. The scenarios for information transmission errors are generated by the Monte Carlo simulation (MCS), besides uncertain physical parameters, e.g., the output power of renewable distributed generations (DGs). Afterward, the clustering algorithms are used to reduce the number of scenarios. In this paper, the k-means clustering algorithm has been selected to cluster the scenarios. The introduced clustering-based method is applied to a CPMG, and test results are compared to available MCS-based studies. The inaccuracy of the proposed clustering-based method is less than 3%, while its execution time is about 22 times faster than MCS-based ones. The comparative test results under various scenarios like available methods, neglecting the cyber failures and information errors illustrate the advantages of this research. The comparative test results illustrate the accuracy of the reliability calculations, while the execution time is desired.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED ENERGY
ISSN
0306-2619
e-ISSN
1872-9118
Svazek periodika
315
Číslo periodika v rámci svazku
June 2022
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
21
Strana od-do
1-21
Kód UT WoS článku
000793663600003
EID výsledku v databázi Scopus
2-s2.0-85127122024