Performance analysis of a robust design optimization of a solenoid with different sensitivity metrics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F23%3A43968191" target="_blank" >RIV/49777513:23220/23:43968191 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0377042722006197?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377042722006197?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2022.115021" target="_blank" >10.1016/j.cam.2022.115021</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance analysis of a robust design optimization of a solenoid with different sensitivity metrics
Popis výsledku v původním jazyce
Optimization is an essential part of designing electrical machines and devices. Considering the uncertainties and tolerances from the beginning of the design process can lead to a more robust design and significantly reduce the number of waste products during the manufacturing process. However, the computational demand for these robust design optimization problems is amazingly high. This paper examines how the computational demand and the robustness of the results depend on the applied sensitivity metric. The multi-objective TEAM 35 benchmark problem has been used as the basis of the comparison. This optimization task aims to create a homogeneous magnetic field in a predefined coil region, which is insensitive to the positioning errors of the coil turns. The original definition of the problem uses a simple worst-case sensitivity metric calculated from the extreme values of the optimized turn parameters in the given tolerance range. This sensitivity metric has been replaced by Plackett–Burman, Box–Behnken, and Central Composite Design-based metrics. It was shown in this simple geometry that there is a significant difference between the resulting sensitivities. Nevertheless, Plackett–Burman and Central Composite Design provided the more accurate and consistent estimate of the sensitivity of the examined layouts, with a higher but still reasonable computation demand than the worst-case metric.
Název v anglickém jazyce
Performance analysis of a robust design optimization of a solenoid with different sensitivity metrics
Popis výsledku anglicky
Optimization is an essential part of designing electrical machines and devices. Considering the uncertainties and tolerances from the beginning of the design process can lead to a more robust design and significantly reduce the number of waste products during the manufacturing process. However, the computational demand for these robust design optimization problems is amazingly high. This paper examines how the computational demand and the robustness of the results depend on the applied sensitivity metric. The multi-objective TEAM 35 benchmark problem has been used as the basis of the comparison. This optimization task aims to create a homogeneous magnetic field in a predefined coil region, which is insensitive to the positioning errors of the coil turns. The original definition of the problem uses a simple worst-case sensitivity metric calculated from the extreme values of the optimized turn parameters in the given tolerance range. This sensitivity metric has been replaced by Plackett–Burman, Box–Behnken, and Central Composite Design-based metrics. It was shown in this simple geometry that there is a significant difference between the resulting sensitivities. Nevertheless, Plackett–Burman and Central Composite Design provided the more accurate and consistent estimate of the sensitivity of the examined layouts, with a higher but still reasonable computation demand than the worst-case metric.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
ISSN
0377-0427
e-ISSN
1879-1778
Svazek periodika
424
Číslo periodika v rámci svazku
May 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
000915260300001
EID výsledku v databázi Scopus
2-s2.0-85144610352