Design and Operation Optimization of a Nuclear Heat-Driven District Cooling System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F23%3A43969183" target="_blank" >RIV/49777513:23220/23:43969183 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/23:00367844
Výsledek na webu
<a href="https://www.hindawi.com/journals/ijer/2023/7880842/" target="_blank" >https://www.hindawi.com/journals/ijer/2023/7880842/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2023/7880842" target="_blank" >10.1155/2023/7880842</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Design and Operation Optimization of a Nuclear Heat-Driven District Cooling System
Popis výsledku v původním jazyce
Carbon-free thermally driven district cooling systems (DCS) can effectively mitigate the excessive electricity consumption and carbon emissions associated with the cooling sector. This study proposes a DCS that employs nuclear heat as the primary energy source. The system comprises three main subsystems: heat station, heat transmission, and cooling station. A heat-only small modular reactor called Teplator, gas boilers, and heat storage are considered to supply the heat required to drive absorption chillers; cold storage and compression chillers are the supplementary units. The technoeconomic aspects of the system are formulated, and an algorithm is developed to determine the optimal design and operation. The method is examined for supplying a typical cooling demand profile with a peak of 2050 MWc. The resulting optimized design includes 11 nuclear plants (150 MWt each), 20 000 MWth heat storage, and 1.9 m diameter heat supply/return pipes. Absorption chillers with a total capacity of 1424 MWc are determined, covering 92% of the total cooling demand, and 244 MWc of compression chillers and 20 000 MWch of cold storage are found to cover the peak and enhance the load following. This system saved 69% of the electricity consumption and carbon emissions and 34% of the costs compared with an electric-based scenario.
Název v anglickém jazyce
Design and Operation Optimization of a Nuclear Heat-Driven District Cooling System
Popis výsledku anglicky
Carbon-free thermally driven district cooling systems (DCS) can effectively mitigate the excessive electricity consumption and carbon emissions associated with the cooling sector. This study proposes a DCS that employs nuclear heat as the primary energy source. The system comprises three main subsystems: heat station, heat transmission, and cooling station. A heat-only small modular reactor called Teplator, gas boilers, and heat storage are considered to supply the heat required to drive absorption chillers; cold storage and compression chillers are the supplementary units. The technoeconomic aspects of the system are formulated, and an algorithm is developed to determine the optimal design and operation. The method is examined for supplying a typical cooling demand profile with a peak of 2050 MWc. The resulting optimized design includes 11 nuclear plants (150 MWt each), 20 000 MWth heat storage, and 1.9 m diameter heat supply/return pipes. Absorption chillers with a total capacity of 1424 MWc are determined, covering 92% of the total cooling demand, and 244 MWc of compression chillers and 20 000 MWch of cold storage are found to cover the peak and enhance the load following. This system saved 69% of the electricity consumption and carbon emissions and 34% of the costs compared with an electric-based scenario.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20305 - Nuclear related engineering; (nuclear physics to be 1.3);
Návaznosti výsledku
Projekt
<a href="/cs/project/TK03030109" target="_blank" >TK03030109: Vývoj technologického celku pro inovativní ukládání energií s využitím fázové změny materiálu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Energy Research
ISSN
0363-907X
e-ISSN
1099-114X
Svazek periodika
23
Číslo periodika v rámci svazku
August 2023
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
001065094000003
EID výsledku v databázi Scopus
2-s2.0-85171375380