Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Dielectric model of polarization mechanisms in time domain FEM simulation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F23%3A43972236" target="_blank" >RIV/49777513:23220/23:43972236 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10566634" target="_blank" >https://ieeexplore.ieee.org/document/10566634</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1049/icp.2024.0487" target="_blank" >10.1049/icp.2024.0487</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Dielectric model of polarization mechanisms in time domain FEM simulation

  • Popis výsledku v původním jazyce

    The presented study describes a method to model dielectrics including their polarization mechanisms in time domain FEM simulation to analyse field stresses occurring at pulse voltage. The transition to renewable energies accelerates the development of power modules with higher power density and efficiency. Components close to switched power supplies are stressed with repetitive pulse voltage. Especially SiC and GaN based switched power sources allow for high efficiencies together with steep pulse rise time causing accelerated ageing of insulating systems or triggering partial discharges. FEM simulation allows to understand the field stresses inside an insulating system at pulse voltage and may help to identify design weaknesses. In this paper, there is presented a method to model a material including its polarization mechanisms in FEM simulations suitable for pulse voltage excitation. Dielectric spectroscopy measurements were performed to investigate different materials depending on excitation frequency and temperature. Collected data is post-processed to identify the Debye relaxation equations in both the time and frequency domains. The equations are transferred to COMSOL to model the materials in time-dependent simulations. Identified equations and the resulting COMSOL model are both tested against measured spectroscopy data. Measured dielectric spectroscopy data indicate that several materials pass a dispersion region during the transition from rising flank to voltage plateau during pulse voltage excitation. This effect can lead to electric field distributions different from those considering constant permittivities when combining multiple materials in an insulating system. The application of the model shows mentioned challenges in designing insulating systems for pulse voltage that require attention to modelling Debye relaxation mechanisms for specific materials. This modelling approach can be used for further research helping to set up test objects to investiga.

  • Název v anglickém jazyce

    Dielectric model of polarization mechanisms in time domain FEM simulation

  • Popis výsledku anglicky

    The presented study describes a method to model dielectrics including their polarization mechanisms in time domain FEM simulation to analyse field stresses occurring at pulse voltage. The transition to renewable energies accelerates the development of power modules with higher power density and efficiency. Components close to switched power supplies are stressed with repetitive pulse voltage. Especially SiC and GaN based switched power sources allow for high efficiencies together with steep pulse rise time causing accelerated ageing of insulating systems or triggering partial discharges. FEM simulation allows to understand the field stresses inside an insulating system at pulse voltage and may help to identify design weaknesses. In this paper, there is presented a method to model a material including its polarization mechanisms in FEM simulations suitable for pulse voltage excitation. Dielectric spectroscopy measurements were performed to investigate different materials depending on excitation frequency and temperature. Collected data is post-processed to identify the Debye relaxation equations in both the time and frequency domains. The equations are transferred to COMSOL to model the materials in time-dependent simulations. Identified equations and the resulting COMSOL model are both tested against measured spectroscopy data. Measured dielectric spectroscopy data indicate that several materials pass a dispersion region during the transition from rising flank to voltage plateau during pulse voltage excitation. This effect can lead to electric field distributions different from those considering constant permittivities when combining multiple materials in an insulating system. The application of the model shows mentioned challenges in designing insulating systems for pulse voltage that require attention to modelling Debye relaxation mechanisms for specific materials. This modelling approach can be used for further research helping to set up test objects to investiga.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IET Conference Proceedings

  • ISBN

    978-1-83953-992-3

  • ISSN

    2732-4494

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    270-275

  • Název nakladatele

    IET

  • Místo vydání

    Neuveden

  • Místo konání akce

    Glasgow, UK

  • Datum konání akce

    28. 8. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku