Determination of the level of degradation of generator stator bar insulation using a onedimensional convolutional neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F24%3A43972990" target="_blank" >RIV/49777513:23220/24:43972990 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10693881" target="_blank" >https://ieeexplore.ieee.org/document/10693881</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/Diagnostika61830.2024.10693881" target="_blank" >10.1109/Diagnostika61830.2024.10693881</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Determination of the level of degradation of generator stator bar insulation using a onedimensional convolutional neural network
Popis výsledku v původním jazyce
This paper presents the results of an experiment to classify the levels of insulation degradation of generator stator bars using a one-dimensional convolutional neural network. The stator bars were subjected to increased electrical stress during the time until insulation breakdown. The bars were periodically injected with a specially designed reference signal during the stress application to generate a dataset for training the neural network. The injected signal was acquired and then subjected to pre-processing. The paper evaluates each pre-processing variant in terms of its effect on the performance of the classification algorithm. It provides the neural network structure and its optimal parameters to accomplish the task of determining the insulation degradation state.
Název v anglickém jazyce
Determination of the level of degradation of generator stator bar insulation using a onedimensional convolutional neural network
Popis výsledku anglicky
This paper presents the results of an experiment to classify the levels of insulation degradation of generator stator bars using a one-dimensional convolutional neural network. The stator bars were subjected to increased electrical stress during the time until insulation breakdown. The bars were periodically injected with a specially designed reference signal during the stress application to generate a dataset for training the neural network. The injected signal was acquired and then subjected to pre-processing. The paper evaluates each pre-processing variant in terms of its effect on the performance of the classification algorithm. It provides the neural network structure and its optimal parameters to accomplish the task of determining the insulation degradation state.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 International Conference on Diagnostics in Electrical Engineering (Diagnostika) : /conference proceedings/
ISBN
979-8-3503-6149-0
ISSN
2464-7071
e-ISSN
2464-708X
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Pilsen, Czech Republic
Datum konání akce
3. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001345150300010