Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparison of algorithmic trading using the homogeneous and non-homogeneous Markov chain analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23510%2F17%3A43932496" target="_blank" >RIV/49777513:23510/17:43932496 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparison of algorithmic trading using the homogeneous and non-homogeneous Markov chain analysis

  • Popis výsledku v původním jazyce

    This empirical study deals with stochastic modelling of a short-term share price development. We use Markov chain analysis (MCA) to predict the share price development. When defining a state space we assume that the share price moves in three types of trends: primary, secondary and minor. The subject of our interest is a minor trend, which usually lasts for several days. During this trend the share price accumulates a certain profit or loss in relation to the price at the beginning of the trend. The state space is defined by the amount of the accumulated profit or loss. The aim of this study is to compare two approaches to modelling the state space. In the first approach, we assume homogeneous Markov chains, i.e. approximately the same volatility, and MCA is performed with unvarying state space. In the second approach, we assume non-homogeneous Markov chains, i.e. a changing volatility, and MCA is performed with varying state space. We create trading strategies for automatic generation of buying and selling orders based on these models. Three business systems have been created for each approach. The profitability of each business system is calculated and compared. The study was performed using historical daily prices (opening and closing) of CEZ shares from the beginning of 2006 until the end of 2016. This study has proved that trading models with varying state space, on the average, outperform trading models with unvarying state space.

  • Název v anglickém jazyce

    Comparison of algorithmic trading using the homogeneous and non-homogeneous Markov chain analysis

  • Popis výsledku anglicky

    This empirical study deals with stochastic modelling of a short-term share price development. We use Markov chain analysis (MCA) to predict the share price development. When defining a state space we assume that the share price moves in three types of trends: primary, secondary and minor. The subject of our interest is a minor trend, which usually lasts for several days. During this trend the share price accumulates a certain profit or loss in relation to the price at the beginning of the trend. The state space is defined by the amount of the accumulated profit or loss. The aim of this study is to compare two approaches to modelling the state space. In the first approach, we assume homogeneous Markov chains, i.e. approximately the same volatility, and MCA is performed with unvarying state space. In the second approach, we assume non-homogeneous Markov chains, i.e. a changing volatility, and MCA is performed with varying state space. We create trading strategies for automatic generation of buying and selling orders based on these models. Three business systems have been created for each approach. The profitability of each business system is calculated and compared. The study was performed using historical daily prices (opening and closing) of CEZ shares from the beginning of 2006 until the end of 2016. This study has proved that trading models with varying state space, on the average, outperform trading models with unvarying state space.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    PROCEEDINGS OF THE 14TH INTERNATIONAL SCIENTIFIC CONFERENCE PART 2 : EUROPEAN FINANCIAL SYSTEM 2017:

  • ISBN

    978-80-210-8609-8

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    9

  • Strana od-do

    223-231

  • Název nakladatele

    Masarykova univerzita

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    26. 6. 2017

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    000418110800027