Comparison of algorithmic trading using the homogeneous and non-homogeneous Markov chain analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23510%2F17%3A43932496" target="_blank" >RIV/49777513:23510/17:43932496 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of algorithmic trading using the homogeneous and non-homogeneous Markov chain analysis
Popis výsledku v původním jazyce
This empirical study deals with stochastic modelling of a short-term share price development. We use Markov chain analysis (MCA) to predict the share price development. When defining a state space we assume that the share price moves in three types of trends: primary, secondary and minor. The subject of our interest is a minor trend, which usually lasts for several days. During this trend the share price accumulates a certain profit or loss in relation to the price at the beginning of the trend. The state space is defined by the amount of the accumulated profit or loss. The aim of this study is to compare two approaches to modelling the state space. In the first approach, we assume homogeneous Markov chains, i.e. approximately the same volatility, and MCA is performed with unvarying state space. In the second approach, we assume non-homogeneous Markov chains, i.e. a changing volatility, and MCA is performed with varying state space. We create trading strategies for automatic generation of buying and selling orders based on these models. Three business systems have been created for each approach. The profitability of each business system is calculated and compared. The study was performed using historical daily prices (opening and closing) of CEZ shares from the beginning of 2006 until the end of 2016. This study has proved that trading models with varying state space, on the average, outperform trading models with unvarying state space.
Název v anglickém jazyce
Comparison of algorithmic trading using the homogeneous and non-homogeneous Markov chain analysis
Popis výsledku anglicky
This empirical study deals with stochastic modelling of a short-term share price development. We use Markov chain analysis (MCA) to predict the share price development. When defining a state space we assume that the share price moves in three types of trends: primary, secondary and minor. The subject of our interest is a minor trend, which usually lasts for several days. During this trend the share price accumulates a certain profit or loss in relation to the price at the beginning of the trend. The state space is defined by the amount of the accumulated profit or loss. The aim of this study is to compare two approaches to modelling the state space. In the first approach, we assume homogeneous Markov chains, i.e. approximately the same volatility, and MCA is performed with unvarying state space. In the second approach, we assume non-homogeneous Markov chains, i.e. a changing volatility, and MCA is performed with varying state space. We create trading strategies for automatic generation of buying and selling orders based on these models. Three business systems have been created for each approach. The profitability of each business system is calculated and compared. The study was performed using historical daily prices (opening and closing) of CEZ shares from the beginning of 2006 until the end of 2016. This study has proved that trading models with varying state space, on the average, outperform trading models with unvarying state space.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
PROCEEDINGS OF THE 14TH INTERNATIONAL SCIENTIFIC CONFERENCE PART 2 : EUROPEAN FINANCIAL SYSTEM 2017:
ISBN
978-80-210-8609-8
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
9
Strana od-do
223-231
Název nakladatele
Masarykova univerzita
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
26. 6. 2017
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000418110800027