Metoda Gaussových směsí při návrhu optimálního vstupního signálu neuronové sítě
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F07%3A00000045" target="_blank" >RIV/49777513:23520/07:00000045 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/49777513:23520/07:00000046
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gaussian Sum Approach with Optimal Experiment Design for Neural Network
Popis výsledku v původním jazyce
Design of optimal input signal for system modeled by multi-layer perceptron network is treated. Because the true system is unknown, the design can be constructed only from the actually obtained model. However, neural networks with the same structure differing only in parameters values are able to approximate various nonlinear mappings therefore it is crucial maximally to use available informations to select suitable input data. Hence a global estimation method allowing to determine conditional probability density functions of network parameters will be used. The Gaussian sum approach based on approximation of arbitrary probability density function by a sum of normal distributions seems to be suitable to use. This approach is a less computationally demanding alternative to the sequential Monte Carlo methods and gives better results than the commonly used prediction error methods. The properties of the proposed experimental design are demonstrated in a numerical example.
Název v anglickém jazyce
Gaussian Sum Approach with Optimal Experiment Design for Neural Network
Popis výsledku anglicky
Design of optimal input signal for system modeled by multi-layer perceptron network is treated. Because the true system is unknown, the design can be constructed only from the actually obtained model. However, neural networks with the same structure differing only in parameters values are able to approximate various nonlinear mappings therefore it is crucial maximally to use available informations to select suitable input data. Hence a global estimation method allowing to determine conditional probability density functions of network parameters will be used. The Gaussian sum approach based on approximation of arbitrary probability density function by a sum of normal distributions seems to be suitable to use. This approach is a less computationally demanding alternative to the sequential Monte Carlo methods and gives better results than the commonly used prediction error methods. The properties of the proposed experimental design are demonstrated in a numerical example.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Ninth IASTED International Conference on Signal and Image Processing
ISBN
978-0-88986-676-8
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
425-430
Název nakladatele
ACTA Press
Místo vydání
Honolulu
Místo konání akce
Honolulu
Datum konání akce
1. 1. 2007
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—